
Secure Routing and
Forwarding
Kai Bu
kaibu@zju.edu.cn
http://list.zju.edu.cn/kaibu/netsec2020

06

Secure Routing and
Forwarding

Secure Routing and
Forwarding

select a path for traffic in a network

Secure Routing and
Forwarding

select a path for traffic in a network

relay packets along a certain path

Secure Routing and
ForwardingHow routing works?
How routing is attacked?
How routing is secured?

Delivery Scheme
unicast
deliver a message to a single specific node

broadcast
deliver a message to all nodes in the network

multicast
deliver a message to a group of nodes

anycast
deliver a message to any one out of a group

Delivery Scheme
unicast
deliver a message to a single specific node

broadcast
deliver a message to all nodes in the network

multicast
deliver a message to a group of nodes

anycast
deliver a message to any one out of a group

geocast
deliver a message to a group of nodes

based on geographic location

Delivery Scheme
unicast
deliver a message to a single specific node

dominant form of msg delivery on Internet

Routing Scheme
unicast
deliver a message to a single specific node

how to find a feasible path?

Routing Scheme
• Intra-domain routing

inside an autonomous system
• Inter-domain routing

between autonomous systems

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Routing Scheme
• Intra-domain routing

consider A-F as routers
• Inter-domain routing

consider A-F as autonomous systems

examples from
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4a-aus/
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4b-aus/

https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4a-aus/
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4b-aus/

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Route Computation
• Link-state algorithms

each router knows complete topology
& link cost information;
independently run routing algorithm to
calculate shortest path to
each destination;

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Dijkstra
c(i,j) link cost from i to j (∞ if unknown)
D(v) current value of cost of path from

source to destination v;
p(v) predecessor node along path from

source to v;
N’ set of nodes whose least

cost path is already known;

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Dijkstra1 Initialization:
2 N' = {A}
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v)
6 else D(v) = ¥
7
8 Loop
9 find w not in N' such that D(w) is

minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either the old cost, or known

shortest path cost to w plus cost from w to v */
14 until all nodes in N'

Dijkstra

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

Dijkstra

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

resulting shortest-path tree for A:

Dijkstra

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

resulting forwarding table at A:

B
D
E
C
F

(A, B)
(A, D)

(A, D)
(A, D)
(A, D)

destination link

what if no global view?

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Route Computation
• Distance-vector algorithms

each router knows direct neighbors
& link costs to neighbors;
independently calculate shortest path
to each destination through
an iterative process based on
neighbors’ distances to dest;

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Bellman-Ford
Dx(y) cost of least-cost path from x to y:
Dx(y) = min{c(x,v) + Dv(y)}

for all neighbors v of x

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Bellman-Ford
Dx(y) cost of least-cost path from x to y:

wait for (change in local link cost of msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Bellman-Ford
Dx(y) cost of least-cost path from x to y:
Dx(y) = min{c(x,v) + Dv(y)}

for all neighbors v of x
DA(F) = min {c(A,B) + DB(F),

c(A,D) + DD(F),
c(A,C) + DC(F) }

= min {2 + 5,
1 + 3,
5 + 3} = 4

node leading to shortest path is next hop
à forwarding table

intra-domain vs inter-domain

Hierarchical Routing
inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers

Hierarchical Routing
inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers

AS: autonomous system

each AS uses its own IGP
internal routing protocol;
border routers run BGP
as well;

IGP: Interior Gateway Prot
• RIP

routing information protocol
• OSPF

open shortest path first

RIP
• Distance-vector algorithm

distance metric: # of hops (max=15)
• Neighbor routers exchange routing

advertisement every 30 seconds
• Failure and recovery

if no update from neighbor N after 180s
invalidate routes via N, notify neighbors

w x y

z

A

C

D B

RIP

destination
network

next router # of hops to
destination

w A 2
y B 2
z B 7
x -- 1
… … …

D:
routing
table

w x y

z

A

C

D B

RIP

destination
network

next router # of hops to
destination

w A 2
y B 2
z B 7
x -- 1
… … …

D:
routing
table

dest hops

w 1

x 1

z 4

… …

advertisement
from A to D

w x y

z

A

C

D B

RIP

destination
network

next router # of hops to
destination

w A 2
y B 2
z BàA 7à5
x -- 1
… … …

D:
routing
table

dest hops

w 1

x 1

z 4

… …

advertisement
from A to D

OSPF
• Link-state algorithm

each node knows its direct neighbors
& the link distance to each(link-state);
each node periodically broadcasts its
link-state to the entire network;

OSPF
• LSP (Link-State Packet)

one entry per neighbor router:
ID of the node that created the LSP;
a list of direct neighbors, with link cost;
sequence number for this LSP (SEQ);
time-to-live (TTL) for info in this LSP;

OSPF
• Build a complete map using link states

everyone broadcasts a piece of topology;
put all pieces together à complete map

OSPF
• Each node stores and forwards LSPs
• Decrement TTL of stored SLPs
• Discard info when TTL=0
• Compute routes using Dijkstra
• Generate LSPs periodically with

increasing SEQ

OSPF
• Reliable flooding of LSP

forward each received LSP to all
neighbors but the one that sent it;
use the source-ID and SEQ to detect
duplicates;

X A

C B D

X A

C B D

X A

C B D

X A

C B D

OSPF
• All OSPF messages are authenticated
• Multiple same-cost paths are allowed
• Hierarchical OSPF is used in large dom

Hierarchical OSPF

Link-state ads only in area

each node has detailed
area topology,
but only direction (shortest
path) to other areas;

Hierarchical OSPF

summarize distances
to routers in local area;

advertise to
other area border routers;

Hierarchical OSPF

run OSPF routing
limited to backbone

Hierarchical OSPF
connect to
other ASes

inter-domain routing
BGP: Border Gateway Protocol

BGP

• Path-vector protocol among border routers
each border router broadcasts to neighbors entire
path of AS sequence to destination:
e.g., Path(B,C) = B, A, C

BGP
For each AS:
• Obtain subnet reachability information

from neighbor ASes;
• Propagate the reachability information

to all internal routers;
• Determine routes to subnets based on

reachability information and policy

BGP

• Example: forwarding table entry for dàx

x

BGP

• Example: forwarding table entry for dàx
AS A learns from BGP that subnet x is reachable from
AS B via border router A.c;

x

BGP

• Example: forwarding table entry for dàx
router d determines from intra-domain routing info
that its interface I is on the least cost path to c;

x

BGP

• Example: forwarding table entry for dàx

x

destination next hop
x I

BGP
Distribute reachability information:
• with eBGP session 3a-to-1c,

AS3 sends prefix reachability info to AS1

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P

BGP
Distribute reachability information:
• 1c uses iBGP sessions to distribute

this new prefix reachability info to all routers in AS1;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P

BGP
Distribute reachability information:
• 1b re-advertises the new reachability info to AS2

over the 1b-to-2a eBGP session;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P

BGP
Distribute reachability information:
• 1b re-advertises the new reachability info to AS2

over the 1b-to-2a eBGP session;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P

when a router learns about a new prefix,
it creates a forwarding table entry for the prefix

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W

provider
networks

customer
networks

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W
• X is dual-homed: attached to two networks

provider
networks

customer
networks

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W
• X is dual-homed: attached to two networks

provider
networks

customer
networks

X does not want to carry
traffic from B to C,
so X will not advertise to
B a route to C.

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW

provider
networks

customer
networks

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW
• Should B advertise to C the path BAW?

provider
networks

customer
networks

Figure 4.5-BGPnew: a simple BGP scenario

A

B

C

W
X

Y

legend:

customer
network:

provider
network

BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW
• Should B advertises to C the path BAW?

provider
networks

customer
networks

No way!
B gets no revenue for
routing CBAW as neither
W nor C is B’s customer.
B wants to route only
to/from its customers.

routing attacks
distance-vector

link-state

BGP

routing attacks
distance-vector:

announce 0 distance to all other nodes
link-state:

drop links; claim direct link to any other routers
BGP:

announce arbitrary prefix; alter paths

YouTube
Pakistan
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

Prefix Hijacking: Case 1

examples from https://people.cs.umass.edu/~phillipa/CSE390/RoutingSecurity.pptx

YouTube
Pakistan
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

X

Hijack + drop packets
going to YouTube

Block your own customers.

Here’s what should have happened….

YouTube
Pakistan
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

Pakistan
Telecom

No, I’m YouTube!
IP 208.65.153.0 / 24

But here’s what Pakistan ended up doing…

Level3, VZW, 22394
66.174.161.0/24

VZW, 22394
66.174.161.0/24

22394 66.174.161.0/24

Paths chosen based on cost and length.

Prefix Hijacking: Case 2

ChinaTel path is shorter

?ChinaTel 66.174.161.0/24 Level3, VZW, 22394
66.174.161.0/24

This prefix and 50K others were announced by China Telecom

Traffic for some prefixes was possibly intercepted

April 2010 : China Telecom intercepts traffic

Path Tampering
• Remove ASes from the AS path

• Add ASes to the AS path

701 883715

?

701 3715 88

701

88

701 88 à
701 3715 88

how to secure routing?

ChinaTel 66.174.161.0/24
? Level3, VZW, 22394

66.174.161.0/24

XRPKI: Invalid!

RPKI shows China Telecom is not a valid origin for this prefix.

RPKI
Resource Public Key Infrastructure

certified mapping
from ASes to public keys and IP prefixes

ChinaTel, 22394
66.174.161.0/24

? Level3, VZW, 22394
66.174.161.0/24

Malicious router can pretend to connect to the valid origin.

RPKI
insufficient!

S-BGP
• Each AS on the path cryptographically

signs its announcement
• Guarantees that each AS on the path

made the announcement in the path:
AS path indicates the order ASes were traversed;
No intermediate ASes were added or removed;

S-BGP
Deployment challenges:
• Complete, accurate registries
• Public key infrastructure
• Cryptographic operations
• Need to perform operations quickly
• Difficulty of incremental deployment

Secure Routing and
Forwarding

select a path for traffic in a network

Secure Routing and
Forwarding

select a path for traffic in a network

relay packets along a certain path
?

Forwarding Anomaly Threat
• Performance

downgrade service quality
• Security

bypass attacking-traffic filter

Path Validation
• PoC: Proof of Consent

certify the provider’s consent to carry
traffic along the path

• PoP: Proof of Provenance
allow upstream nodes to prove to
downstream nodes that they carried
the packet

Path Validation

Path Validation

https://cs.nyu.edu/~mwalfish/papers/icing-conext11.pdf

https://cs.nyu.edu/~mwalfish/papers/icing-conext11.pdf

computation-less device?

FlowCloak: Defeating
Middlebox-Bypass Attacks in
Software-Defined Networking
Middlebox

Middlebox

Middlebox:
Pain Spot in
modern networks

l Needs

l Troubles

Varieties of functions: Security & Performance

Widely deployed: A third of network devices

Deployment and configuration:
Complex & Error-prone

Costs: Personnel, Money, Time

Middlebox:
Pain Spot in
modern networks

Middlebox:
Pain Spot in
modern networks

Rules

Rules

Rules

NAT Light Firewall Heavy Firewall

NAT Light Firewall Heavy Firewall

?

Middlebox:
Pain Spot in
modern networks

SDN

Controller

NAT Light Firewall Heavy Firewall

Middlebox:
Pain Spot

SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall Heavy Firewall

Middlebox:
Pain Spot

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall Heavy Firewall

Middlebox meets
SDN

Middlebox meets
SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Forwarding Ambiguity

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Middlebox meets
SDN

Forwarding Ambiguity

Middlebox meets
SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Ip_src:
H1→?
H2→?

Forwarding Ambiguity

?
?

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

?

Middlebox meets
SDN

Forwarding Ambiguity

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Alert

Stateless

Middlebox meets
SDN

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Alert

Stateless→Stateful

Middlebox meets
SDN

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>,
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>,
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass>
Interface=S3:S2

fwd(LE) Flowtags [NSDI ’14]
Stateful Tags on packer header

Middlebox meets
SDN

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Middlebox-Bypass AttacksMiddlebox
SDN

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>,
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>,
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass>
Interface=S3:S2

fwd(LE)

Middlebox

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Leads to:
• Severe security breaches

• Performance degradation

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>,
interface=S2:S1

tag(LF, pass)
fwd(HF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>,
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass>
Interface=S3:S2

fwd(LE)

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Middlebox-Bypass Attacks

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>,
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>,
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass>
Interface=S3:S2

fwd(LE) Leads to:
• Severe security breaches

• Performance degradation

Policies:
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Middlebox-Bypass Attacks:
More than Hypothesis

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Benton et al.
Attacking insecure channel

Without SSL

Middlebox-Bypass Attacks:
More than Hypothesis

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Insecure firmware,
e.g. ONIE

Insecure NOSes

Pickett @ DEFCON

Middlebox-Bypass Attacks:
More than Hypothesis

l Probe-based Methods

l Statistics-based Methods

Ø Blinded by coward-attack
Ø Waste valuable control

channel bandwidth

Ø False positive (negative)
Ø Waste valuable control

channel bandwidth

Middlebox-Bypass Attacks:
Existing malicious switch
detection methods

l Probe-based Methods

l Statistics-based Methods

Ø Blinded by coward-attack
Ø Waste valuable control

channel bandwidth

Ø False positive (negative)
Ø Waste valuable control channel

bandwidth

Middlebox-Bypass Attacks:
Existing Secure Methods

FlowCloak: Defeating
Middlebox-Bypass Attacks in
Software-Defined Networking
Middlebox-Bypass Attacks
FlowCloak

FlowCloak:
Model

Rules
Rules

Rules

Controller

NAT Light Firewall Heavy Firewall

？ ？H1

H2

S1 S2 S3 LE

FlowCloak:
Architecture NATFlowCloak LFFlowCloak

H1

H2

S1 S2 S3 LE

dtag ptag

FlowCloak Tag

Policies:
(1)H1—NAT — LE
(2)H2 — NAT — LF —HF —LE

ptag verification

Alert

No Cryptography
Computation on Switches

HFFlowCloak

FlowCloak:
Architecture NATFlowCloak LFFlowCloak

FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

NATFlowCloak LFFlowCloak

FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

TAGVERIFICATION(P)

if isexist(P. dtag, dtagmap) then

ptag’ = Hash(Sample(P. Header))

if(ptag’ == P.Header.ptag)

return TRUE

return FALSE

TAGVERIFICATION ends

NATFlowCloak LFFlowCloak

FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

TAGGENERATION(P)

if next_dev(P) ==

DEV.MIDDLEBOX then

dtag = flowtags(P, self.ID,

Controller)

writedtag(P, dtag)

ptag = Hash(Sample(P. Header))

writeptag(P, ptag)

else

ptag = Map(Sample(P. Header))

TAGGENERATION ends

FlowCloak:
Middlebox vs. Switch

No cryptography computation:
Simulating the hashing function
using only match-forward rules

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward

FlowCloak:
Middlebox vs. Switch

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward

No cryptography computation:
Simulating the hashing function
using only match-forward rules

Satisfying Security means
Sufficient Rules

FlowCloak:
Middlebox vs. Switch

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward

Length(P.SampleDomain)=1
2 rules;
…
Length(P.SampleDomain)=n
2n rules;
Too many rules for limited
TCAM capacity

FlowCloak:
Middlebox vs. Switch
h1 bits h2 bits h3 bits

g1 g2 g3

Flow Table 1 Flow Table 2 Flow Table 3

Multi-tag technology

Middlebox Side:
Multi-tag generation based
on parallel generation and
hashing table.

Switch Side:
Multi-tag verification using
only ∑"#$% 2^ℎ𝑖 rules rather
than ∏"#$

% 2^ℎ𝑖 rules

FlowCloak:
Middlebox vs. Switch
h1 bits h2 bits h3 bits

g1 g2 g3

Flow Table 1 Flow Table 2 Flow Table 3

Caveat:
Each tag becomes shorter
→Attacking each part
becomes easier?

FlowCloak:
Middlebox vs. Switch

More sophisticated mapping:
multiple mapping schemes + nonconsecutive sample bits + double shuffle

Shuffle 1

Shuffle 2

Review
• Routing
• Routing Attacks
• Secure Routing
• Secure Forwarding
• Secure SDN Forwarding

?

Readings

• BGP Hijack Explained by Jorge Ribas
• Why Is It Taking So Long to Secure Internet Routing?

by Sharon Goldberg
• FlowCloak: Defeating Middlebox-Bypass Attacks in

Software-Defined Networking

https://www.youtube.com/watch%3Fv=9NBv7lKrG1A
https://queue.acm.org/detail.cfm%3Fid=2668966
http://list.zju.edu.cn/kaibu/flowcloak.pdf

Thank You
be on the road

