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Secure Routing and
Forwarding

select a path for traffic in a network

relay packets along a certain path



Secure Routing and
ForwardingHow routing works?
How routing is attacked?
How routing is secured?



Delivery Scheme
unicast
deliver a message to a single specific node

broadcast
deliver a message to all nodes in the network

multicast
deliver a message to a group of nodes

anycast
deliver a message to any one out of a group



Delivery Scheme
unicast
deliver a message to a single specific node

broadcast
deliver a message to all nodes in the network

multicast
deliver a message to a group of nodes

anycast
deliver a message to any one out of a group

geocast
deliver a message to a group of nodes

based on geographic location



Delivery Scheme
unicast
deliver a message to a single specific node

dominant form of msg delivery on Internet



Routing Scheme
unicast
deliver a message to a single specific node

how to find a feasible path?



Routing Scheme
• Intra-domain routing

inside an autonomous system
• Inter-domain routing

between autonomous systems
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Routing Scheme
• Intra-domain routing

consider A-F as routers
• Inter-domain routing

consider A-F as autonomous systems

examples from 
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4a-aus/
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4b-aus/

https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4a-aus/
https://www.cs.umd.edu/~shankar/417-F01/Slides/chapter4b-aus/
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Route Computation
• Link-state algorithms

each router knows complete topology 
& link cost information;
independently run routing algorithm to 
calculate shortest path to              
each destination;
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Dijkstra
c(i,j) link cost from i to j (∞ if unknown)
D(v) current value of cost of path from         

source to destination v;
p(v) predecessor node along path from 

source to v;
N’ set of nodes whose least

cost path is already known;
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Dijkstra1  Initialization:
2   N' = {A}
3   for all nodes v 
4     if v adjacent to A 
5       then D(v) = c(A,v) 
6       else D(v) = ¥
7 
8   Loop
9 find w not in N' such that D(w) is

minimum 
10   add w to N' 
11   update D(v) for all v adjacent to w and not in N': 
12      D(v) = min(D(v), D(w) + c(w,v)) 
13    /* new cost to v is either the old cost, or known 

shortest path cost to w plus cost from w to v */ 
14  until all nodes in N'
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Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E
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Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

resulting shortest-path tree for A:



Dijkstra
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Step
0
1
2
3
4
5

start N'
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

resulting forwarding table at A:

B
D
E
C
F

(A, B)
(A, D)

(A, D)
(A, D)
(A, D)

destination link



what if no global view?
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Route Computation
• Distance-vector algorithms

each router knows direct neighbors       
& link costs to neighbors;
independently calculate shortest path 
to each destination through                 
an iterative process based on               
neighbors’ distances to dest;
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Bellman-Ford
Dx(y) cost of least-cost path from x to y:
Dx(y) = min{c(x,v) + Dv(y)}                      

for all neighbors v of x
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Bellman-Ford
Dx(y) cost of least-cost path from x to y:

wait for (change in local link cost of msg from neighbor)

recompute estimates

if DV to any dest has changed, notify neighbors 
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Bellman-Ford
Dx(y) cost of least-cost path from x to y:
Dx(y) = min{c(x,v) + Dv(y)}                      

for all neighbors v of x
DA(F) = min {c(A,B) + DB(F),

c(A,D) + DD(F),
c(A,C) + DC(F) }

= min {2 + 5,
1 + 3,
5 + 3}  = 4

node leading to shortest path is next hop 
à forwarding table



intra-domain vs inter-domain



Hierarchical Routing
inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers



Hierarchical Routing
inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers

AS: autonomous system

each AS uses its own IGP
internal routing protocol;
border routers run BGP
as well;



IGP: Interior Gateway Prot
• RIP

routing information protocol
• OSPF

open shortest path first



RIP
• Distance-vector algorithm

distance metric: # of hops (max=15)
• Neighbor routers exchange routing 

advertisement every 30 seconds
• Failure and recovery

if no update from neighbor N after 180s 
invalidate routes via N, notify neighbors



w x y

z

A

C

D B

RIP

destination 
network

next router # of hops to 
destination

w A 2
y B 2
z B 7
x -- 1
… … …

D:
routing 
table



w x y

z

A

C

D B

RIP

destination 
network

next router # of hops to 
destination

w A 2
y B 2
z B 7
x -- 1
… … …

D:
routing 
table

dest hops

w 1

x 1

z 4

… …

advertisement
from A to D



w x y

z

A

C

D B

RIP

destination 
network

next router # of hops to 
destination

w A 2
y B 2
z BàA 7à5
x -- 1
… … …

D:
routing 
table

dest hops

w 1

x 1

z 4

… …

advertisement
from A to D



OSPF
• Link-state algorithm

each node knows its direct neighbors    
& the link distance to each(link-state);
each node periodically broadcasts its  
link-state to the entire network;



OSPF
• LSP (Link-State Packet)

one entry per neighbor router:
ID of the node that created the LSP;
a list of direct neighbors, with link cost;
sequence number for this LSP (SEQ);
time-to-live (TTL) for info in this LSP;



OSPF
• Build a complete map using link states

everyone broadcasts a piece of topology;
put all pieces together à complete map



OSPF
• Each node stores and forwards LSPs
• Decrement TTL of stored SLPs
• Discard info when TTL=0
• Compute routes using Dijkstra
• Generate LSPs periodically with 

increasing SEQ



OSPF
• Reliable flooding of LSP

forward each received LSP to all 
neighbors but the one that sent it;
use the source-ID and SEQ to detect 
duplicates;

X A

C B D

X A

C B D

X A

C B D

X A

C B D



OSPF
• All OSPF messages are authenticated
• Multiple same-cost paths are allowed
• Hierarchical OSPF is used in large dom



Hierarchical OSPF

Link-state ads only in area

each node has detailed 
area topology,
but only direction (shortest 
path) to other areas;



Hierarchical OSPF

summarize distances 
to routers in local area;

advertise to
other area border routers;



Hierarchical OSPF

run OSPF routing 
limited to backbone



Hierarchical OSPF
connect to 
other ASes



inter-domain routing
BGP: Border Gateway Protocol



BGP

• Path-vector protocol among border routers
each border router broadcasts to neighbors entire 
path of AS sequence to destination:
e.g., Path(B,C) = B, A, C



BGP
For each AS:
• Obtain subnet reachability information 

from neighbor ASes;
• Propagate the reachability information 

to all internal routers;
• Determine routes to subnets based on 

reachability information and policy 



BGP

• Example: forwarding table entry for dàx

x



BGP

• Example: forwarding table entry for dàx
AS A learns from BGP that subnet x is reachable from 
AS B via border router A.c;

x



BGP

• Example: forwarding table entry for dàx
router d determines from intra-domain routing info 
that its interface I is on the least cost path to c;

x



BGP

• Example: forwarding table entry for dàx

x

destination next hop
x I



BGP
Distribute reachability information:
• with eBGP session 3a-to-1c,

AS3 sends prefix reachability info to AS1

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P



BGP
Distribute reachability information:
• 1c uses iBGP sessions to distribute 

this new prefix reachability info to all routers in AS1;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P



BGP
Distribute reachability information:
• 1b re-advertises the new reachability info to AS2 

over the 1b-to-2a eBGP session;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P



BGP
Distribute reachability information:
• 1b re-advertises the new reachability info to AS2 

over the 1b-to-2a eBGP session;

3b

1d

3a

1c
2aAS3

AS1

AS21a

2c

2b

1b

3c

eBGP session

iBGP session

P

when a router learns about a new prefix,
it creates a forwarding table entry for the prefix 



 

Figure 4.5-BGPnew: a simple BGP scenario 
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BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W

provider
networks

customer
networks
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BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W
• X is dual-homed: attached to two networks

provider
networks

customer
networks



 

Figure 4.5-BGPnew: a simple BGP scenario 
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BGP

Routing policy:
• Provider networks: A, B, C
• Customer networks (of provider networks): X, Y, W
• X is dual-homed: attached to two networks

provider
networks

customer
networks

X does not want to carry 
traffic from B to C,
so X will not advertise to 
B a route to C.



 

Figure 4.5-BGPnew: a simple BGP scenario 

A 

B 

C 

W 
X 

Y 

legend: 

customer 
network: 

provider 
network 

 

BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW

provider
networks

customer
networks
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BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW
• Should B advertise to C the path BAW?

provider
networks

customer
networks



 

Figure 4.5-BGPnew: a simple BGP scenario 
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legend: 
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provider 
network 

 

BGP

Routing policy:
• A advertises to B the path AW
• B advertises to X the path BAW
• Should B advertises to C the path BAW?

provider
networks

customer
networks

No way!
B gets no revenue for 
routing CBAW as neither 
W nor C is B’s customer.
B wants to route only 
to/from its customers.



routing attacks
distance-vector

link-state 

BGP



routing attacks
distance-vector:

announce 0 distance to all other nodes
link-state: 

drop links; claim direct link to any other routers
BGP:

announce arbitrary prefix; alter paths



YouTube
Pakistan 
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

Prefix Hijacking: Case 1

examples from https://people.cs.umass.edu/~phillipa/CSE390/RoutingSecurity.pptx



YouTube
Pakistan 
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

X

Hijack + drop packets 
going to YouTube

Block your own customers.

Here’s what should have happened….



YouTube
Pakistan 
Telecom

“The Internet”

Telnor
Pakistan Aga Khan

University

Multinet
Pakistan

I’m YouTube:
IP 208.65.153.0 / 22

Pakistan
Telecom

No, I’m YouTube!
IP 208.65.153.0 / 24

But here’s what Pakistan ended up doing…



Level3, VZW, 22394
66.174.161.0/24 

VZW, 22394
66.174.161.0/24

22394 66.174.161.0/24

Paths chosen based on cost and length. 

Prefix Hijacking: Case 2



ChinaTel path is shorter

?ChinaTel 66.174.161.0/24 Level3, VZW, 22394
66.174.161.0/24 

This prefix and 50K others were announced by China Telecom

Traffic for some prefixes was possibly intercepted

April 2010 : China Telecom intercepts traffic



Path Tampering
• Remove ASes from the AS path

• Add ASes to the AS path

701 883715

?

701 3715 88

701

88

701 88 à
701 3715 88



how to secure routing?



ChinaTel 66.174.161.0/24 
? Level3, VZW, 22394

66.174.161.0/24 

XRPKI: Invalid!

RPKI shows China Telecom is not a valid origin for this prefix.

RPKI 
Resource Public Key Infrastructure

certified mapping 
from ASes to public keys and IP prefixes



ChinaTel, 22394 
66.174.161.0/24 

? Level3, VZW, 22394
66.174.161.0/24 

Malicious router can pretend to  connect to the valid origin.

RPKI 
insufficient!



S-BGP
• Each AS on the path cryptographically 

signs its announcement
• Guarantees that each AS on the path 

made the announcement in the path:
AS path indicates the order ASes were traversed;
No intermediate ASes were added or removed;



S-BGP
Deployment challenges:
• Complete, accurate registries
• Public key infrastructure
• Cryptographic operations
• Need to perform operations quickly
• Difficulty of incremental deployment



Secure Routing and
Forwarding

select a path for traffic in a network



Secure Routing and
Forwarding

select a path for traffic in a network

relay packets along a certain path
?



Forwarding Anomaly Threat 
• Performance

downgrade service quality
• Security

bypass attacking-traffic filter



Path Validation
• PoC: Proof of Consent

certify the provider’s consent to carry 
traffic along the path

• PoP: Proof of Provenance
allow upstream nodes to prove to 
downstream nodes that they carried 
the packet



Path Validation



Path Validation

https://cs.nyu.edu/~mwalfish/papers/icing-conext11.pdf

https://cs.nyu.edu/~mwalfish/papers/icing-conext11.pdf


computation-less device?



FlowCloak: Defeating
Middlebox-Bypass Attacks in
Software-Defined Networking
Middlebox



Middlebox



Middlebox:
Pain Spot in
modern networks

l Needs

l Troubles

Varieties of functions: Security & Performance

Widely deployed: A third of network devices

Deployment and configuration: 
Complex & Error-prone

Costs: Personnel, Money, Time



Middlebox:
Pain Spot in
modern networks



Middlebox:
Pain Spot in
modern networks

Rules

Rules

Rules

NAT Light Firewall Heavy Firewall



NAT Light Firewall Heavy Firewall

?

Middlebox:
Pain Spot in
modern networks



SDN

Controller

NAT Light Firewall Heavy Firewall

Middlebox:
Pain Spot



SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall Heavy Firewall

Middlebox:
Pain Spot
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Middlebox meets
SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Forwarding Ambiguity
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Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Middlebox meets
SDN

Forwarding Ambiguity



Middlebox meets
SDN

Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

Ip_src:
H1→?
H2→?

Forwarding Ambiguity

?
?



Policies

Rules
Rules

Rules

Controller

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

LE

Alert

?

Middlebox meets
SDN

Forwarding Ambiguity



Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Alert

Stateless

Middlebox meets
SDN



Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Alert

Stateless→Stateful

Middlebox meets
SDN



NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>, 
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>, 
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass> 
Interface=S3:S2

fwd(LE) Flowtags [NSDI ’14]
Stateful Tags on packer header

Middlebox meets
SDN

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert



Middlebox-Bypass AttacksMiddlebox 
SDN

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>, 
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>, 
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass> 
Interface=S3:S2

fwd(LE)

Middlebox

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert



Leads to:
• Severe security breaches

• Performance degradation

NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>, 
interface=S2:S1

tag(LF, pass)
fwd(HF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>, 
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass> 
Interface=S3:S2

fwd(LE)

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Middlebox-Bypass Attacks



NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Switch Some Crucial Rules

Matching Action

S2 tag=<src:H2, NAT>, 
interface=S2:S1

fwd(LF)

S2 tag=<src:H1,NAT>,
interface=S2:S1

fwd(S3)

S3 tag=<src:H2, LF, alert>, 
interface=S3:S2

fwd(HF)

S3 tag=<src:H2, LF, pass> 
Interface=S3:S2

fwd(LE) Leads to:
• Severe security breaches

• Performance degradation

Policies: 
(1) H1 — NAT — LE
(2) H2 — NAT — LF — HF — LE

Alert

Middlebox-Bypass Attacks:
More than Hypothesis



NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Benton et al.
Attacking insecure channel 

Without SSL 

Middlebox-Bypass Attacks:
More than Hypothesis



NAT Light Firewall (LF) Heavy Firewall (HF)

H1

H2

S1 S2 S3 LE

Insecure firmware,
e.g. ONIE

Insecure NOSes

Pickett @ DEFCON

Middlebox-Bypass Attacks:
More than Hypothesis



l Probe-based Methods

l Statistics-based Methods

Ø Blinded by coward-attack
Ø Waste valuable control 

channel bandwidth

Ø False positive (negative)
Ø Waste valuable control 

channel bandwidth

Middlebox-Bypass Attacks:
Existing malicious switch 
detection methods



l Probe-based Methods

l Statistics-based Methods

Ø Blinded by coward-attack
Ø Waste valuable control 

channel bandwidth

Ø False positive (negative)
Ø Waste valuable control channel 

bandwidth

Middlebox-Bypass Attacks:
Existing Secure Methods 



FlowCloak: Defeating
Middlebox-Bypass Attacks in
Software-Defined Networking
Middlebox-Bypass Attacks
FlowCloak



FlowCloak: 
Model

Rules
Rules

Rules

Controller

NAT Light Firewall Heavy Firewall

？ ？H1

H2

S1 S2 S3 LE



FlowCloak:
Architecture NATFlowCloak LFFlowCloak

H1

H2

S1 S2 S3 LE

dtag ptag

FlowCloak Tag

Policies: 
(1)H1—NAT — LE
(2)H2 — NAT — LF —HF —LE

ptag verification

Alert

No Cryptography 
Computation on Switches

HFFlowCloak



FlowCloak:
Architecture NATFlowCloak LFFlowCloak



FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

NATFlowCloak LFFlowCloak



FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

TAGVERIFICATION(P)

if isexist(P. dtag, dtagmap)  then

ptag’ = Hash(Sample(P. Header))

if(ptag’ == P.Header.ptag)

return TRUE

return FALSE

TAGVERIFICATION ends

NATFlowCloak LFFlowCloak



FlowCloak:
Middlebox vs. Middlebox

Packet Processing Logic on FC Middleboxes

TAGGENERATION(P)

if next_dev(P) == 

DEV.MIDDLEBOX then

dtag = flowtags(P, self.ID, 

Controller)

writedtag(P, dtag)

ptag = Hash(Sample(P. Header))

writeptag(P, ptag)

else

ptag = Map(Sample(P. Header))

TAGGENERATION ends



FlowCloak:
Middlebox vs. Switch

No cryptography computation: 
Simulating the hashing function 
using only match-forward rules

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward



FlowCloak:
Middlebox vs. Switch

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward

No cryptography computation: 
Simulating the hashing function 
using only match-forward rules

Satisfying Security means 
Sufficient Rules



FlowCloak:
Middlebox vs. Switch

Hash(b)=~b:
Hash(0)=1
Hash(1)=0

Egress Switch Rules
Matching Action

P.SampleDomain=0 && P.Header.ptag=1 forward

P.SampleDomain=1 && P.Header.ptag=0 forward

Length(P.SampleDomain)=1
2 rules;
…
Length(P.SampleDomain)=n
2n rules;
Too many rules for limited
TCAM capacity



FlowCloak:
Middlebox vs. Switch
h1 bits h2 bits h3 bits

g1 g2 g3

Flow Table 1 Flow Table 2 Flow Table 3

Multi-tag technology

Middlebox Side:
Multi-tag generation based 
on parallel generation and 
hashing table.

Switch Side:
Multi-tag verification using 
only ∑"#$% 2^ℎ𝑖 rules rather 
than ∏"#$

% 2^ℎ𝑖 rules



FlowCloak:
Middlebox vs. Switch
h1 bits h2 bits h3 bits

g1 g2 g3

Flow Table 1 Flow Table 2 Flow Table 3

Caveat: 
Each tag becomes shorter
→Attacking each part 
becomes easier?



FlowCloak:
Middlebox vs. Switch

More sophisticated mapping: 
multiple mapping schemes + nonconsecutive sample bits + double shuffle

Shuffle 1

Shuffle 2



Review
• Routing
• Routing Attacks
• Secure Routing
• Secure Forwarding
• Secure SDN Forwarding



?



Readings

• BGP Hijack Explained by Jorge Ribas
• Why Is It Taking So Long to Secure Internet Routing?

by Sharon Goldberg
• FlowCloak: Defeating Middlebox-Bypass Attacks in 

Software-Defined Networking

https://www.youtube.com/watch%3Fv=9NBv7lKrG1A
https://queue.acm.org/detail.cfm%3Fid=2668966
http://list.zju.edu.cn/kaibu/flowcloak.pdf


Thank You
be on the road


