Introduction to Computer Architecture

Assignment 2 - Solution
Due May 14, 2015

1. [50 = 10 x 5] Use the following code fragment:

Loop: LD R1, O(R2) ; load R1 from address 0+R2
DADDI R1, R1, #1 ;R1=R1+1
SD R1, 0, (R2) ; store R1 at address 0+R2
DADDI R2, R2, #4 ;R2=R2 +4
DSUB R4, R3, R2 ; R4 =R3-R2
BNEZ R4, Loop ; branch to Loop if R4 1= 0

Assume that the initial value of R3 is R2 + 396.

a. Data hazards are caused by data dependences in the code. List all of the data
dependences in the code above. Record the register, source instruction, and
destination instruction; for example, there is a data dependency fro register R1
from the LD to DADDI, that is,

R1 LD DADDI

b. Show the timing of this instruction sequence for the 5-stage RISC pipeline without
any forwarding or bypassing hardware but assuming that a register read and a
write in the same clock “forwards” through the register file, as shown in Figure
C.6. Use a pipeline timing chart like that in Figure C.5. Assume that the branch is
handled by flushing the pipelining. If all memory references take 1 cycle, how
many cycles does this loop take to execute?

c. Show the time of this instruction sequence for the 5-state RISC pipeline with full
forwarding and bypassing hardware. Use a pipeline timing chart like that shown in
Figure C.5. Assume that the branch is handled by predicting it as not taken. If all
memory references take 1 cycle, how many clock cycles does this loop take to
execute?

d. Show the timing of this instruction sequence for the 5-stage RISC pipeline with
full forwarding and bypassing hardware. Use a pipeline timing chart like that
shown in Figure C.5. Assume that the branch is handled by predicting it as taken.
If all memory references take 1 cycle, how many clock cycles does this loop take
to execute?



e.

High-performance processors have very deep pipelines-more than 15 stages.
Imagine that you have a 10-stage pipeline in which every stage of the 5-stage
pipeline has been split in two. The only catch is that, for data forwarding, data are
forwarded from the end of a pair of stages to the beginning of the two stages
where they are needed. For example, data are forwarded from the output of the
second execute stage to the input of the first execute stage, still causing a 1-cycle
delay. Show the timing of this instruction sequence for the 10-stage RISC pipeline
with full forwarding and bypassing hardware. Use a pipeline timing chart like that
shown in Figure C.5. Assume that the branch is handled by predicting it as taken.
If all memory references take 1 cycle, how many cycles does this loop take to
execute?

Solution

d.

b.

R1 LD DADDI
R1 DADDI SD

R2 LD DADDI
R2 SD DADDI
R2 DSUB DADDI
R4 BNEZ DSUB

Forwarding is performed only via the register file. Branch outcomes and
targets are not known until the end of the execute stage. All instructions
introduced to the pipeline prior to this point are flushed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LD R1, 0(RZ) F D X M W
DADDI R1, R1, #1 F s s D X M W
SD 0(R2), R1 F s s D X M W
DADDI R2, R2, #4 F D X M W
DSUB R4, R3, R2 F s s D X M W
BNEZ R4, Loop F s s D X M W
LD R1, 0(R2) F D

Since the initial value of R3 is R2 + 396 and equal instance of the loop adds 4
to R2, the total number of iterations is 99. Notice that there are 8 cycles lost to
RAW hazards including the branch instruction. Two cycles are lost after the
branch because of the instruction flushing. It takes 16 cycles between loop
instances; the total number of cycles is 98 X 16 + 18 = 1584. The last loop
takes two addition cycles since this latency cannot be overlapped with addi-
tional loop instances.

Now we are allowed normal bypassing and forwarding circuitry. Branch out-
comes and targets are known now at the end of decode.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LD R1, 0(R2) F D X M W
DADDI R1, R1, #1 F D s X M W
SD R1, 0(R2) F s D X M W
DADDI R2, R2, #4 F D X M W
DSUB R4, R3, RZ F D X M W
BNEZ R4, Loop F s D X M W
(incorrect instruction) F s s S S
LD R1, 0(R2) F D X M W

Again we have 99 iterations. There are two RAW stalls and a flush after the
branch since the branch is taken. The total number of cycles is 9 x 98 + 12 =
894. The last loop takes three addition cycles since this latency cannot be
overlapped with additional loop instances.

d. See the table below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ID RL,ORD F D X M W
DADDI R1, R1, #1 F D s X M W
SO R1, O(R?) F s D X M W
DADDL R2, R2, #4 F D X M W
DSUB R4, R3, R2 F DX MW
BNEZ R4, Loop F s DX M W
LD  RL, O(R2) F D X M W
Again we have 99 iterations. We still experience two RAW stalls, but since
we correctly predict the branch, we do not need to flush after the branch.
Thus, we have only 8 X 98 + 12 = 796.
e. See the table below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LD RI, 0(R2) F1 F2 D1 D2 X1 X2 Ml M2 WI W2
DADDIRL, R1, #1  F1 F2 DI D2s s s Xl X2 Ml M2 Wl W2
SD R, 0(R2) Fl F2 DI1's s s D2 XI X2 MI M2 Wl W2
DADDI R2, R2, #4 F1 F2 s s s DI D2 X1 X2 Ml M2 W1 W2
DSUB R4, R3, RZ Fl's s s F2 DI D2 s Xl X2 Ml M2 Wl W2
BNEZ R4, Loop FI F2 DI s D2 X1 X2 MI M2 Wl W2
LD  R1, 0(R2) FI F2 s DI D2 X1 X2 Ml M2 Wl W2

We again have 99 iterations. There are three RAW stalls between the LD and
ADDI, and one RAW stall between the DADDI and DSUB. Because of the
branch prediction, 98 of those iterations overlap significantly. The total num-
ber of cycles is 10 X 98 + 19 = 999.

3. [40 =10 x 4] Virtual machines can lose performance from a number of events, such
as the execution of privileged instructions, TLB misses, traps, and 1/O. These events



are usually handled in system code. Thus, one way of estimating the slowdown when
running under a VM is the percentage of application execution time in a system
versus user mode. For example, an application spending 10% of its execution in a
system mode might slow down by 60% when running on a VM. Figure 2.32 lists the
early performance of various system calls under native execution, pure virtualization,
and paravirtualization for LMbench using Xen on an Itanium system with times
measured in microseconds (courtesy of Matthew Chapman of the University of New

South Wales).

a. What types of programs would be expected to have smaller slowdowns when

running under VMs?

b. If slowdowns were linear as a function of system time, given the slowdown above,
how much slower would a program spending 20% of its execution in system time

be expected to run?

c. What is the median slowdown of the system calls in the table above under pure

virtualization and paravirtualization/

d. Which functions in the table above have the largest slowdowns? What do you

think the cause of this could be?

Benchmark Native Pure Para

Null call 0.04 0.96 0.50
Null /O 0.27 6.32 291
Stat 1.10 10.69 4.14
Open/close 1.99 20.43 7.71
Install sighandler 0.33 7.34 2.89
Handle signal 1.69 19.26 2.36
Fork 56.00 513.00 164.00
Exec 316.00 2084.00 578.00
Fork + exec sh 1451.00 7790.00 2360.00

Solution

a. Programs that do a lot of computation but have small memory working sets

and do little I/O or other system calls.

b. The slowdown above was 60% for 10%, so 20% system time would run

120% slower.

¢. The median slowdown using pure virtualization is 10.3, while for para virtu-

alization the median slowdown is 3.76.

d. The null call and null I/O call have the largest slowdown. These have no real
work to outweigh the virtualization overhead of changing protection levels,

so they have the largest slowdowns.



