
unXpec: Breaking Undo-based Safe Speculation
Mengming Li

Zhejiang University
mmli@zju.edu.cn

Chenlu Miao
Zhejiang University
clmiao@zju.edu.cn

Yilong Yang
Zhejiang University
yangyl5@zju.edu.cn

Kai Bu?
Zhejiang University
kaibu@zju.edu.cn

Abstract—Speculative execution attacks exploiting speculative
execution to leak secrets have aroused significant concerns in
both industry and academia. They mainly exploit covert or side
channels over microarchitectural states left by mis-speculated
and squashed instructions (i.e., transient instructions). Most such
attacks target cache states. Existing cache-based defenses against
speculative execution attacks fall into two categories, Invisible
and Undo. Most Invisible defenses buffer execution metadata
of speculative instructions and place them into the cache only
if the speculatively executed instructions become determined.
Motivated by the fact that mis-speculations are rare cases, Undo
defenses allow speculative instructions to modify cache states.
Upon a mis-speculation, they rollback cache states to the ones
prior to the execution of transient instructions. However, Invisible
defenses have been recently found insecure by the speculative
interference attack. This calls for a deep security inspection of
Undo defenses against speculative execution attacks.

In this paper, we present unXpec as the first attack against
Undo-based safe speculation. It exploits the secret-dependent
timing channel exhibited through the rollback operations of
Undo defenses. Specifically, the rollback process requires both
invalidating cache lines brought into the cache by transient
instructions and restoring evicted cache lines from the cache
by transiently loaded data. This opens up a channel that encodes
secret via the timing difference between when rollback involves
much invalidation and restoration or not. We further leverage
eviction sets to enforce more restoration operations. This yields
a longer rollback time and thus a larger secret-dependent timing
difference. We demonstrate the timing channel over the open-
source CleanupSpec, a representative Undo solution. A single
transient load can trigger a secret-dependent timing difference
of 22 cycles (without eviction sets) of 32 cycles (with eviction
sets), which is sufficiently exploitable for constructing a covert
channel for speculative execution attacks. We run unXpec on
the gem5 simulator with CleanupSpec enabled. The results show
that unXpec can leak secrets at a high rate of 140 Kbps with an
accuracy over 90%. Simply enforcing constant-time rollback to
mitigate unXpec may induce an over 70% performance overhead.

Index Terms—speculative execution attack; undo speculation;
covert channel attack;

I. INTRODUCTION

Speculative execution attacks such as Spectre [21] and its
variants [2], [3], [9], [20], [22], [27], [36] have aroused signif-
icant concerns in both industry and academia. They exploit the
design flaws of speculative execution to leak secret information
through covert or side channels over microarchitectural states.
On modern out-of-order processors, speculative execution en-
ables the CPU to execute instructions before their validity is

?Kai Bu is the corresponding author.
∗The authors are also affiliated with Key Laboratory of Blockchain and

Cyberspace Governance of Zhejiang Province.

determined toward speedup [17]. The results of speculatively
executed instructions take effect only if the speculation is
correct. Upon a mis-speculation, the CPU squashes the mis-
speculated instruction (i.e., transient instruction) and younger
instructions in the reorder buffer (ROB). This rollbacks the
effects of squashed instructions on architectural states in
memory and register while preserving program accuracy. How-
ever, the associative changes in microarchitectural states still
remain. They reveal the footprints of transient instructions
and open the door for covert or side channel attacks [21],
[23]. Various attacks have been established by exploiting
microarchitectural units such as caches [7], [21], [23], [27],
[38], [43], ports [3], and branch predictors [10]. Most of them
exploit the cache as a covert channel.

The state-of-the-art speculative interference attack [2] re-
veals that it is insecure by simply prohibiting speculatively
executed instructions from modifying cache states. This found-
to-be-insecure strategy is the core idea of Invisible defenses
[1], [19], [35], [45] against speculative execution attacks.
Specifically, most Invisible approaches buffer the data blocks
and corresponding metadata accessed by speculatively exe-
cuted instructions. Only if the speculation is correct can the
buffered data be copied into the cache hierarchy and become
visible to the rest of the system. Transient instructions thus
leave no secret-dependent trace in the cache for exploitation.
However, correct speculations account for more than 95%
[34]. Complicating their operations induces a major source
of slowdown. For example, the first representative Invisible
defense—InvisiSpec [45]—enforces two reads per specula-
tively executed load and leads to a 17% slowdown. Followup
Invisible defenses improve efficiency by eliminating the need
of extra loads for correctly speculated instructions. Albeit
becoming more efficient, Invisible defenses have been recently
breached by the speculative interference attack [2] that exploits
microarchitectural contention on hardware components such as
MSHR to leak secrets.

The breach of Invisible defenses solicits a deep inspection
of the other branch of defenses against speculative execu-
tion attacks—Undo defenses [34]. Different from Invisible
defenses, the Undo approach permits transient instructions
to bring data blocks to the cache. When a mis-speculation
is detected, the CPU rollbacks the cache states to the ones
prior to the execution of transient instructions. The rollback
process requires two key operations, invalidation and restora-
tion. Invalidation aims to invalidate any cache lines loaded by
transient instructions. Restoration aims to restore the original

cache lines evicted by transiently loaded data. This way,
footprints of transient instructions are eliminated and thus
unexploitable. Undo defenses achieve such effect by introduc-
ing extra operations to only uncommon mis-predictions (i.e.,
< 5% [34]). They thus promise a much higher efficiency than
most Invisible defenses do. For example, the representative
Undo defense—CleanupSpec [34]—slows down execution by
only 5%.

In this paper, we take the first step to exploit security
vulnerabilities of Undo-based safe speculation. Specifically,
we identify a secret-dependent timing channel that can be
exploited to leak secrets from CleanupSpec-alike Undo safe
speculation solutions. The source of such a timing channel
comes from the rollback operations. As aforementioned, the
rollback process requires both invalidation and restoration to
revert any cache state changes caused by transient instructions.
The more state changes the transient instructions lead to,
the more rollback operations and thus the longer rollback
time it takes. We validate this intuition by collecting various
time measurements over open-source CleanupSpec [33]. Two
observations out of the measurements confirm the feasibility
of a timing channel. One is that the rollback time upon a mis-
speculation increases with the amount of cache state changes.
The other is that the time for detecting a mis-speculation is
relatively constant given a fixed speculation condition. These
two observations demonstrate that the execution time of an
Undo-based safe speculation increases with the amount of
rollback operations. If we encode secrets via transient loads
such that they intrigue different rollback complexities, we can
build a timing channel over Undo-based safe speculation.

We present unXpec, the first speculative execution attack
against Undo-based safe speculation. We delicately craft the
attack algorithm to maximize the secret-dependent timing
difference. Specifically, unXpec leads to no invalidation or
restoration operation at all when handling a mis-speculation
given secret 0. This yields the highest contrast to the time
measurement given secret 1 under the same configuration. We
run our unXpec attack over open-source CleanupSpec [33]. It
demonstrates a secret-dependent timing difference of 22 cycles
using only a single load instruction in the branch, which is
sufficient for an exploitable timing channel [2], [3], [46].

We further optimize unXpec using eviction sets [41] toward
a larger secret-dependent timing difference. The key idea is
that we generate an eviction set of addresses and access them
using transient instructions to evict original cache lines. This
necessitates restoring the evicted cache lines during rollback.
We thus gain an enlarged rollback time and thus a larger secret-
dependent timing difference up to 32 cycles given only one in-
branch load instruction. The increased secret-dependent timing
difference promises a higher robustness against background
noise and thus a higher attack resolution. We implement
unXpec and the evaluation shows that unXpec can leak secrets
from CleanupSpec-enabled systems with a 2 GHz CPU at a
high rate of 140 Kbps with an accuracy over 90%.

Together with the speculative interference attack [2] against
Invisible defenses, our unXpec attack complements security

evaluation of existing defenses against speculative execution
attacks. In summary, we make the following contributions
to uncovering the security vulnerabilities of Undo-based safe
speculation.

• We identify a new secret-dependent timing channel over
Undo defenses against speculative execution attacks (Sec-
tion IV). It arises from the fact that an Undo approach
may take a different amount of time to rollback different
amounts of cache state changes caused by transient
instructions. If we can calibrate the scale of cache state
changes through secret-dependent transient instructions,
we can exploit the identified timing channel to leak
secrets.

• We present unXpec as the first speculative execution
attack against Undo-based safe speculation (Section V).
We craft the attack algorithm to maximize the secret-
dependent timing difference. Optimized by using eviction
sets, unXpec can enforce more rollback operations and
thus an even larger timing difference. This promises a
higher robustness against background noise and thus a
higher attack resolution.

• We run unXpec on the gem5 simulator and validate
its attack efficacy over open-source CleanupSpec [33]
(Section VI). The results show that unXpec can intrigue
an average timing difference of 22 cycles and 32 cycles
given only a single load in the branch without and with
using eviction sets, respectively. On a 2 GHz CPU, the
unXpec attacks without and with eviction sets can re-
spectively achieve an accuracy of 86.7% and 91.6% with
only a single sample per bit. This yields a sufficiently
high leakage rate of 140 Kbps.

• We evaluate performance overhead of the most intu-
itive countermeasure against unXpec—constant-time roll-
back (Section VI). Experimental results demonstrate that
the constant-time rollback scheme may introduce non-
negligible overhead of over 70%. This calls for either a
more efficient countermeasure against unXpec or a more
robust Undo-based safe speculation.

• We publish the unXpec source code as well as guidelines
for result reproduction at https://doi.org/10.5281/zenodo.
5771649 (Artifact Appendix).

II. BACKGROUND

In this section, we review the basics of speculative execution
attacks and cache-based defenses.

A. Speculative Execution Attack

Speculative execution attacks exploit side channels over the
transient microarchitectural states exiled by speculative execu-
tion [2], [3], [10], [11], [21], [23], [27], [32], [36], [38]–[40].
As a key source of speedup on modern out-of-order processors,
speculative execution leverages spare processing cycles to
execute instructions before their validity is determined [17].
Results of correct speculation can be immediately used without
experiencing the execution delay. Mis-speculated instructions
(also known as transient instructions) need to be squashed such

Algorithm 1 Spectre Variant 1 [21], [45]
Input:

1: An uncached array used to probe the secret: P [64 ∗ 256];
2: An arbitrary array used to access the secret: A[n];
3: An out-of-bounds index of array A: i;

Output: secret
4: //victim code
5: function VICTIM(index)
6: if index < n then
7: y = P [64 ∗A[index]];
8: end if
9: end function

10: //attacker code
11: function POISON()
12: Invoke VICTIM(index) with some in-bounds indexes;
13: end function
14: function PROBE()
15: Load every entry of probe array P ;
16: Infer the secret value by measuring the loading time;
17: end function
18: POISON(); //train if-condition toward mis-speculation
19: FLUSH(); //flush every entry of probe array P and n
20: VICTIM(i); //trigger victim to speculatively execute
21: PROBE(); //probe each entry of array A to infer secret

that they make no effective architectural state changes in the
memory and registers. The corresponding microarchitectural
state changes in caches of transient instructions are, however,
left unattended [8], [26], [45]. This opens the door for specula-
tive execution attacks that exploit a cache-based covert channel
between an attacker process and a victim process. Specifically,
the attacker manipulates the victim to issue certain transient
instructions such that secret related states are loaded into
caches. Through timing-based cache side-channel attacks [5],
[25], [28], [47], the attacker can infer the in-cache status of
these secret-related states. Then it can further infer the secret.

Next, we use Spectre [21] to showcase the workflow of a
speculative execution attack.

Spectre [21], the pioneering and prevailing speculative ex-
ecution attack, can leak arbitrary data from the victim to
the attacker. Essentially, the attacker leverages mis-speculation
to evade bounds checking such that the victim program can
access out-of-bounds data. As shown in Algorithm 1 [21],
[45], Spectre crafts the victim with access privilege to byte-
array A[n] and to byte-array P upon in-bound accesses to A
(lines 5-9). To train the branch predictor such that VICTIM
favors an in-bounds prediction in subsequent invocations, the
attacker runs POISON to invoke VICTIM with in-bounds
values of index for a sufficient number of times (lines 11-
13). Later on, the attacker turns to invoking VICTIM with an
out-of-bounds index i (line 20). Following previous prediction
statistics, the branch predictor mis-predicts the out-of-bounds
access as legal. This makes P [64∗A[i]] loaded into the cache;
P [64 ∗ A[i]] is dependent on A[i] that is not supposed to
be accessed by the victim. When the bounds checking is

eventually determined as illegal, the CPU discards in-ROB
results rather than microarchitectural states (e.g., cache states).
The attacker then runs PROBE to load every element of
array P and determines whether an element is cached through
measuring its loading time (lines 14-17). (Note that to remove
false positives caused by elements loaded before VICTIM(i),
all elements of P should be evicted from the cache using
FLUSH (line 19) prior to invoking VICTIM(i) (line 20).) If
the loading time of P [j] indicates a cache hit, the attacker can
infer the secret value of A[i] as j/64.

B. Cache-Based Defenses

Since the root cause for most speculative execution attacks
is the cache-state change caused by transient instructions, an
essential defense should prohibit the attacker from inferring
such changes via cache side-channel attacks [45]. This moti-
vates two types of defenses—Invisible and Undo [34].
Invisible defenses allow no state change in the cache by
transient instructions at all [1], [19], [35], [42], [45]. They
usually buffer execution metadata of speculatively executed
instructions and places the buffered data into the cache only
if speculative instructions become determined [1], [19], [42],
[45]. Albeit hiding state changes of transient instructions, the
buffer introduces an additional stop before data finally reach
the cache hierarchy. This is deemed as a major source of
slowdown. For example, the pioneering Invisible defense—
InvisiSpec [45]—slows down execution by over 17%. To
get rid of the buffer, delay-on-miss [35] leverages the fact
that L1 cache misses are rare cases. Upon L1 cache misses,
delay-on-miss simply defers to serve access requests until
the speculative prediction is determined. By applying value
prediction, this can reduce the slowdown to 11%.

However, speculative interference attacks [2] recently re-
veal that even if an Invisible defense is adopted, they can
still exploit microarchitectural contention on certain hardware
components (e.g., MSHR and execution units) to leak secrets.
This solicits a deep inspection of Undo robustness.
Undo defenses allow transient instructions to directly load
data blocks to the cache hierarchy and rollback the so caused
state changes upon mis-speculation [34]. Given that mis-
speculation is an uncommon case, Undo defenses lead to
a much lower overhead than most Invisible defenses that
complicate the common case of correct speculation. The rep-
resentative Undo defense, CleanupSpec [34], slows down exe-
cution by only 5%. Furthermore, CleanupSpec uses a random
replacement policy to avoid side channels over replacement
states that can be exploited by speculative interference attacks
[2], [5], [43]. Figure 1 shows the timeline for CleanupSpec
to secure mis-speculation. We accordingly introduce its key
strategies for mitigating information leakage as follows.

We start with strategies used in the speculation window
from when a speculative execution starts (T1 in Figure 1)
to when mis-speculation is detected (T2 in Figure 1). Two
strategies are used herein to avoid cache states from being
exploited. First, CleanupSpec delays unsafe operations such
as downgrading a cache coherence state from M/E to S when

T1: Speculative
Execution Start

T2: Mis-Speculation
Detected

/ Start Rollback
T6: Finish CleaningT3: Clean Inflight

Mis-Speculated Loads
T5: Clean Executed

Mis-Speculated Loads

T4: Wait for Correct
Path Reordered Loads

to Execute

Fig. 1. Timeline for CleanupSpec-alike [34] Undo defenses against speculative execution attacks. We present unXpec attacks to exploit secret-dependent
timing differences found in T3-T5.

prediction is unresolved. This prevents side-channel attacks
that exploit cache coherence states [46]. Second, if an access
request from another thread/core hits a speculatively installed
line, CleanupSpec serves it with a dummy cache miss. This
prevents the attacker from inferring information through a
transiently installed line in the speculation window.

Once CleanupSpec detects mis-speculation, it rollbacks
state changes by transient instructions using two strategies—
invalidation and restoration (T3 to T5 in Figure 1). T3 and
T4 conduct necessary preparation prior to state rollback.
First, CleanupSpec requests MSHR to clean inflight mis-
speculated loads (T3 in Figure 1). Second, to avoid recursive
squash during cleanup, CleanupSpec waits for the retirement
of all inflight correct-path loads, reordered due to out-of-
order execution (T4 in Figure 1). Finally, CleanupSpec starts
rollbacking state changes as if mis-speculated instructions had
not taken effect (T5 in Figure 1). It first invalidates all the
cache lines installed by transient instructions. It then restores
evicted cache lines that are replaced by transiently installed
lines. The addresses of transiently installed lines and and that
of the evicted lines are maintained in the load queue and
MSHR, respectively. Note that CleanupSpec restores evicted
lines only for the L1 cache. Restoration on lower-lever caches
is not adopted due to high overhead. To remedy the so caused
vulnerability, CleanupSpec uses address randomization [31] on
lower-level caches.

In this paper, we identify a speculative execution attack
against CleanupSpec-alike Undo defenses. The key obser-
vation is that transient instructions encoded with different
secret bits lead to different amounts of invalidation/restoration
operations and thus different rollback timings. While Cleanup-
Spec states that the cleanup operations may increase the stall
time, it fails to uncover the associative vulnerability. First, by
observing the cleanup operations on benchmarks, CleanupSpec
concludes that cleanup takes only a small fraction of the
squash time. It thus implicitly suggests that the attacker can
hardly observe the actual cleanup time. However, we will
show that the attacker can elaborately craft the attack code to
eliminate the interference of inflight loads by using memory
fence instructions. Second, CleanupSpec demonstrates that
the restoration operations in cleanup only take a short time
because they are pipelined and serviced from the L2 cache.
However, our experimental results show that only the secret-
dependent invalidation operations suffices to construct the
timing channel and the secret-dependent restoration operations
helps to enlarge the timing difference.

Next, we define the system and attacker models in Sec-
tion III and measure various timings that can be exploited as

side channels in Section IV. Then we accordingly craft our
unXpec attack against Undo-based mis-speculation defenses
in Section V.

III. SYSTEM AND THREAT MODELS

In this section, we present generalized Undo-based protected
cache models based on the state-of-art CleanupSpec [34]. We
hereafter leverage CleanupSpec as a running example to cover
the attack surface of Undo-based protected cache without loss
of generality. Following attacker models in various speculative
execution attacks and defenses [2], [10], [13], [34], [44], [45],
we consider that the sender and receiver code run in the same
thread and temporally multiplex the core with other honest
programs.

A. Undo-based Protected Cache Model

Following CleanupSpec, the L1 cache adopts protection
strategies including invalidation, restoration, partition, and
random replacement. First, invalidation and restoration clean
state traces by transient instructions and rollback cache states
to when transient instructions have not taken place. As dis-
cussed in Section II-B, they enforce invalidating cache lines
loaded by transient instructions as well as restoring cache lines
replaced by transiently loaded lines. Second, the L1 cache is
way partitioned (e.g., following NoMo [12]) to prevent non-
speculative cache attacks (e.g., Prime+Probe [25], [28]) under
simultaneous multithreading (SMT). Finally, the L1 cache
adopts a random replacement policy to prevent side-channel
attacks exploiting replacement states [2], [5], [43].

Protection strategies on lower-level caches include invali-
dation and randomized address mapping. Lower-level caches
cannot afford restoration because it induces heavy storage
and high complexity to buffer evictions therein and track
the so caused recursive evictions throughout the entire cache
hierarchy due to writebacks. Instead, they adopt randomized
cache design (e.g., CEASER [31]) to mitigate security vulner-
abilities.

In addition, every cache layer is further augmented with
protection strategies such as delaying coherence downgrade
and servicing a dummy cache miss to another thread/core that
hits on a speculatively installed line (Section II-B).

B. Attacker Model

The attacker launching our unXpec attack (Section V) aims
to extract secrets from the victim like existing covert-channel
variations of speculative execution attacks. Following various
speculative execution attacks and defenses [2], [10], [13], [34],
[44], [45], we consider a typical attacker model as follows.

Algorithm 2 Constant Branch Resolution Time: PoC
Input:

1: An array used to generate transient line installs: P [64∗n];
2: A hyperparameter to control the size of array P : n;
3: An arbitrary array used to access the secret: A[n];
4: An out-of-bounds index of array A: i;
5: //sender code
6: function SENDER(index)
7: if index < f(N) then
8: secret = A[index];
9: load(&P [secret ∗ 64 ∗ 1]);

10: load(&P [secret ∗ 64 ∗ 2]);
11: ...
12: load(&P [secret ∗ 64 ∗ n]);
13: end if
14: end function
15: //measurement code
16: function POISON()
17: Invoke SENDER(index) with some in-bounds indexes;
18: end function
19: POISON(); //train if-condition toward mis-speculation
20: load(&P [0]); //load P [0] to the L1 cache
21: FLUSH(); //flush P [64 ∗ 1]...P [64 ∗ n]
22: SENDER(i); //trigger sender to speculatively execute

• The attacker code includes the sender and the receiver,
which run in the same thread on the same physical core
[2], [13], [34], [45]. It aims to leak memory contents
of other security domains. Specifically, the sender is
responsible for encoding the secret information through
the timing channel uncovered in this paper. By analyzing
the execution time of the sender, the receiver can decode
the one-bit secret information in every round of attack.
Like SpectreRewind [13], our attacker model can be used
to implement Meltdown-like [23] attacks or leak secrets
outside of a sandbox [21], [40].

• The sender and receiver share not only lower-level caches
with cross-core processes but also the same-core L1 cache
where cleanup operations are enabled.

IV. TIMING CHANNEL IDENTIFICATION

In this section, we measure the timing characteristics of
various stages throughout the CleanupSpec timeline in Fig-
ure 1. We identify two essential characterstics that can be
exploited to build a secret-dependent timing channel. First,
it takes a relatively constant time to resolve a given branch
(i.e., the time span between T1 and T2 in Figure 1). Second,
the time for rollbacking cache states depends on the volume
of transiently loaded cache lines (T5 in Figure 1). We further
observe that such volume can be manipulated by tuning the
secret value encoded in the sender code. This motivates us
to build a secret-dependent timing channel over Undo-based
safe speculation and accordingly design our unXpec attack in
Section V and validate the attack efficacy in Section VI.

1 2 3 4 5

Number of Loads inside Branch

100

150

200

250

B
ra
n
ch

R
es
o
lu
ti
o
n
T
im

e
(c
y
cl
es
)

1 access, secret 0

1 access, secret 1

2 accesses, secret 0

2 accesses, secret 1

3 accesses, secret 0

3 accesses, secret 1

Fig. 2. The branch resolution time is relatively constant given a fixed branch-
ing statement (i.e., a fixed number of memory accesses in our experiments),
regardless of the number of loads in the branch and the secret bit encoded
through these loads.

A. Constant Branch Resolution Time

We observe that the branch resolution time under a given
branching statement is relatively constant both in concept and
in practice. In a speculative execution attack, the branch res-
olution time ranges from when a speculative execution starts
to when a mis-speculation is detected (T1-T2 in Figure 1).
Meanwhile, the sender speculatively executes transient instruc-
tions to encode unauthorized data through a microarchitectural
covert channel. The branch resolution time should be long
enough for the sender to finish all transient instructions. To this
end, the attacker can induce a slow memory access by flushing
bound n to the memory (Algorithm 1 - line 19). It may also
use more complex branching statements. Conceptually, once
the expression of a branching statement is determined (e.g.,
index < n in Algorithm 1 - line 6), the resolution time is
relatively constant and shows little relation to statements in
the branch.

We run experiments on gem5 [4] to verify the constant
branch resolution time. It is a cycle accurate simulator that
can model an out-of-order processor and microarchitectural
state effects in the cache hierarchy by speculative execution
[34], [45]. We construct a program following Algorithm 2 and
measure insensitivity of branch resolution time to statement
complexity in the branch as well as statement complexity of
branch condition. The measurements on a real processor also
demonstrate the same properties (Section VI-D).

First, our measurements demonstrate that given a fixed
branching statement, varying statements in the branch barely
fluctuates the branch resolution time. Following Algorithm 2,
we poison the branch predictor to trigger mis-speculation to
the sender (line 19), load P [0] into the cache, and flush the
blocks P [64 ∗ 1]...P [64 ∗ n] residing in the cache (lines 20-
21). We assume that the secret value is one bit (0 or 1) and
thus the in-branch load instructions will either all hit the cache
when the secret value is 0 or all result in cache misses when
the secret value is 1. We vary the number of loads (lines 9-
12) and the secret value to observe the branch resolution time
under a fixed expression f(N). As shown in Figure 2, the
branch resolution time given a fixed f(N) is contained within

1 2 3 4 5 6 7 8

Number of Squashed Loads

20

21

22

23

24

25
T
im

in
g
D
if
fe
re
n
ce

(c
y
cl
es
)

Fig. 3. The timing difference for rollbacking secret-dependent cache states
is sufficient for a timing channel.

a relatively narrow band regardless of the number of in-branch
loads. Furthermore, given a fixed f(N) and a fixed number of
in-branch loads, the branch resolution time is also insensitive
to the secret value.

Second, our measurements demonstrate that the branch
resolution time increases with the complexity of the branching
statement. We adjust the complexity by tuning the number
N of non-pipelined memory accesses required by computing
expression f(N) (Algorithm 2 - line 7). For example, we can
assign the bound variable for bounds checking as a multi-
dimensional array element and enforce multiple dependent
memory accesses for getting array indices. An example con-
figuration enforcing N=3 memory accesses is if (index <
A[A[A[2][0]][0]][0]), where A[2][0] = 1, A[1][0] =
0, and A[0][0] = bound. As shown in Figure 2, the branch
resolution time linearly increases with N . In the process of
crafting attacks, we can optimize f(N) such that 1) it yields
a branch resolution time that is sufficiently long to cover the
execution of transient instructions in the branch, and 2) it
makes the branch resolution time as short as possible such that
the mis-speculation window (i.e., T1-T2 in Figure 1) accounts
for a limited portion of the entire timeline and therefore limits
its impact on timing difference measurements.
B. Differentiable Rollback Time

We observe that secret-dependent rollback time upon mis-
speculation is differentiable. In order to measure such timing
difference, we craft the secret value in Algorithm 2 to vary
the amount of cleanup operations on CleanupSpec. If the
secret is set 0, the loads in the branch all hit the cache
during speculative execution. After resolving the branch and
starting to execute cleanup operations, few operations are
needed because the cache states are unmodified and thus take
little time. On the contrary, if the secret is set 1, the transient
instructions will load some blocks from the memory to the
cache. In the cleanup stage (T3-T5 in Figure 1), to rollback
the changed cache states, CleanupSpec at least invalidates the
transiently installed lines and restores the original lines evicted
from the L1 cache if necessary. In this case, the CPU core stalls
for a longer time to execute cleanup operations than when the
secret is set 0.

Figure 3 reports the differentiability of rollback time with
varying number of transient loads under different secret val-
ues. First, we measure the timing difference given only one
transient load. When the secret is 1, it takes 22 more clock

mistrain()

load(P[0])
flush(P[64 * 1]…P[64 * n])

memory_fence ()
obtain_first_timestamp()

if index < f(N):
 secret = A[index]
 load(P[secret * 64 * 1])
 …
 load(P[secret * 64 * n])

obtain_second_timestamp()

Preparation
Stage

Measurement
Stage

Receiver Sender

Fig. 4. unXpec attack design.

cycles for rollback than when the secret is 0. According
to established attacks [3], [46], 22 cycles are sufficiently
distinguishable to build a timing channel. We further measure
the variation of the timing difference along with different
number of transient loads. An interesting observation is that
more transient loads do not necessarily yield a significant
growth of timing difference [34]. This helps to control attack
overhead through issuing a limited number of transient loads.

V. UNXPEC

In this section, we detail the design of our unXpec attack. It
exploits the secret-dependent timing difference demonstrated
by rollbacking transient loads, which are deemed as hard to
exploit previously [34]. By further leveraging eviction sets
[16], [29], [30], [37], [41], transient loads can evict more
original cache lines and lead to a longer rollback time as well
as a larger timing difference. We also discuss how to calibrate
the number of transient loads toward improving the attack rate
and resolution.

A. Attack Design

Figure 4 sketches the key framework of our unXpec attack.
It consists of two stages, preparation and measurement. In
the preparation stage, the receiver first poisons the branch
predictor to incur subsequent mis-speculation. Furthermore,
the receiver also instruments cache states via loading and
flushing certain cache lines such that the measurement stage
can accurately observe secret-dependent timing difference.
Specifically, in the measurement stage, the receiver triggers
mis-speculation in the sender to make the sender execute
secret-dependent load instructions. Once the mis-speculation
is detected, cleanup operations take place to rollback cache
states modified by the secret-dependent load instructions. The
receiver measures the sender execution time and the rollback
time using instructions such as rdtscp. Finally, the receiver
uses the time measurement to decode the secret.
Preparation Stage. Before causing the sender to enter spec-
ulative execution, in the preparation stage, the receiver brings
microarchitecture into desired states. Specifically, we target
two types of microarchitecture components—branch predictor
and caches. First, the receiver mistrains the branch predictor
by performing a series of instructions. A mistrained branch

predictor leads to out-of-bounds accesses by transient instruc-
tions. Second, we instrument caches by loading P [0] into the
cache and flushing P [64 ∗ 1]...P [64 ∗ n]. The essential goal
for such preparation is that the sender program under secret 0
yields all-hits of P [0] and the sender program under secret 1
yields all-misses of P [64 ∗ 1]...P [64 ∗ n]. This helps generate
a significant secret-dependent timing difference.
Measurement Stage. In the measurement stage, the sender
is triggered to execute secret-dependent load instructions. The
sender essentially encodes the secret value through the timing
difference that is originated from these instructions’ cleanup
operations. As shown in Figure 1, the cleanup operations in
T3 and T5 are interleaved with execution of inflight correct-
path load instructions in T4. However, the execution time of T4
cannot be controlled by the attacker. To avoid such uncertainty
from being counted into the time measurement, we at the
begging of the measurement stage let the sender execute a
memory fence instruction. The memory fence instruction zeros
out the time of T4 from the entire cleanup timeline. Right after
the memory fence instruction, we obtain the first timestamp
prior to the execution of the branch statement. We obtain the
other timestamp after cleanup operations as to be discussed
shortly. Finally, we approximate the timestamp difference as
the time measurement to decode the secret.

The sender continues to resolve the branch by computing
the expression f(N) and comparing it to the index. As
mentioned in Section IV-A, the expression f(N) is elaborately
designed to make the sender sufficiently execute the transient
instructions in the branch. Concurrently computing the branch
statement, the CPU starts to fetch and execute the subsequent
instructions leveraging out-of-order execution and speculative
execution. Because the branch predictor is mistrained by the
receiver in the preparation stage, the sender then uses out-of-
bounds index (crafted by the receiver) to execute the transient
instructions in the branch. Therefore, the sender can access the
target address that is specified by the value of A plus out-of-
bounds index and temporarily load the one-bit secret to CPU
[2], [3]. Different secret values decide exact data blocks to be
accessed by the subsequent transient loads.

• If secret = 0, all the load instructions in the branch will
issue memory accesses to the same P [0]. Because P [0]
is loaded to the cache by the receiver in the preparation
stage, the in-branch load instructions will all hit the cache.
No cache state is modified by them and thus there is
no need for the CPU to rollback the cache states after
detecting mis-prediction.

• If secret = 1, on the contrary, those load instructions will
all miss in the cache and must bring the requested data
blocks from memory to the cache hierarchy. Cache states
will be modified by transient instructions. After the mis-
speculated branch statement is detected, CleanupSpec
needs to clean up the modified cache states. For example,
CleanupSpec stalls the core to invalidate the transient
cache line installs in the cache hierarchy brought by the
transient load instructions and restores the original L1
cache lines that are evicted. In comparison with when

Transiently
Load

1. Prime

Clean:
Restore

Receiver

Sender

2. 3. 4.

invalid

Clean:
Invalidate

Fig. 5. unXpec using eviction sets to enlarge the secret-dependent timing
difference.

the secret is 0, the CPU takes a longer time to finish the
cleanup operations, introducing an extra time overhead in
the measurement stage.

After finishing the cleanup operations, the sender redirects
to the correct path. The receiver will obtain the second
timestamp, which nearly equals to the end of sender’s cleanup
operations. We estimate the time measurement by subtracting
the first timestamp from the second one.

We now demonstrate that the preceding time measurement
is secret dependent. Essentially, the time measurement is
equivalent to the time span from T1 to T6 in Figure 1. As
the memory fence instruction was executed in advance and
all transient instructions in the branch have sufficient time to
execute, we eliminate the impact of T3 and T4 on the entire
timeline. Moreover, we have argued that the time from T1 to
T2 approximates a constant and the secret-dependent cleanup
operations in T5 can generate differentiable timing difference
in Section IV. We conclude that only the timing difference
originated from secret-dependent cleanup operations is vari-
able in the measured time interval. By statistically analyzing
the time measurement, the receiver can infer the one-bit secret
information.

B. Attack Optimization

In practice, the larger the timing difference arises from
different secret values, the higher resolution the attacker can
achieve to infer secrets. The timing difference in our unXpec
attack mainly comes from different amounts of cleanup op-
erations for rollbacking secret-dependent transient loads. The
rollback further consists of invalidation and restoration. The
time for invalidation is relatively fixed according to the number
of transient loads. However, the time for restoration varies with
the number of L1 cache lines evicted by transiently-loaded
data blocks. If the L1 cache is not sufficiently warmed up,
transient loads may just bring some new data blocks into
the cache without evicting any original cache line therein.
In this case, the restoration contributes no time add-up to
rollback and thus limits the secret-dependent timing difference.
Enlarging the timing difference calls for sufficient evictions.
This motivates us to leverage eviction sets [16], [29], [41] to
pre-load cache lines that must be evicted by transient loads.

Specifically, we construct eviction sets [16], [29], [41] to
prime the cache sets where P [64 ∗ 1]...P [64 ∗ n] locate in
the L1 cache prior to the measurement stage. As shown in

1 2 3 4 5 6 7 8

Number of Squashed Loads

20

30

40

50

60
T
im

in
g
D
if
fe
re
n
ce

(c
y
cl
es
)

Fig. 6. The timing difference for rollbacking secret-dependent cache states
can be enlarged using eviction sets.

Figure 5, the transient loads in the branch will definitely
evict some original line and thus induce the L1 cache to
restore the evicted lines during cleanup operations. Since
P [64 ∗ 1]...P [64 ∗ n] correspond to transient loads when the
secret value is 1, priming their cache sets introduces more
restoration operations during cleanup than when the secret
value is 0 and thus enlarges the secret-dependent timing
difference. Although CleanupSpec employs a way-partition
cache (e.g., NoMo [12]) to prevent the L1 cache from non-
speculative side-channel attacks by an SMT adversary [24], it
cannot prevent the adversary from constructing eviction sets
in non-SMT scenarios. We can still construct eviction sets in
our attack because of the non-SMT threat model we follow
(Section III).

We validate the optimization effect using eviction sets and
report the measurement in Figure 6. The secret-dependent
timing difference has been enlarged from about 20 cycles to
32∼64 cycles. Because priming cache sets completes ahead
of the measurement stage, it has no effect on the receiver’s
measurement except enlarging the rollback time. We can
leverage the enlarged timing difference against background
noise and yield a higher attack resolution.

C. Attack Parameterization

It is key to tune the number of loads in the branch toward
high attack rate and accuracy. More loads in the branch may
yield a longer rollback time and thus a more noticeable secret-
dependent timing difference. Theoretically, we can unlimitedly
increase the number of loads in the branch as long as the
branch statement f(N) is sufficiently complex. Since resolv-
ing the branch takes a nearly constant time given a fixed f(N),
it seems that the timing difference under different secret values
(T1-T6 in Figure 1) can be arbitrarily enlarged. Two practical
concerns, however, suggest that we should carefully choose
the number of loads for our unXpec attack.

First, too many loads in the branch decrease the attack rate.
This is because that more loads lead to a longer timeline
for CleanupSpec (T1-T6 in Figure 1). This directly enforces
a longer measurement time per round for the attacker. The
associated benefit is a higher robustness against background
noise and thus a higher attack resolution.

Second, too many loads may even affect the attack accuracy.
More loads in the branch require a more complex branch
statement. Conceptually, if the sender takes too much time

TABLE I
EXPERIMENT SETUP [34].

Module Configuration

Processor 1 core, 2 GHz,
out-of-order 192-entry ROB

Private L1 I cache 32 KB, 4-way, 128-set
Private L1 D cache 32 KB, 8-way, 64-set
Shared L2 cache 2 MB, 16-way, 2048-set
Memory 50 ns RT after L2

to resolve the branch, it directly increases the T1-T2 time in
Figure 1 and thus increases the total time observed by the
receiver (i.e., T1-T6 in Figure 1). Meanwhile, if the timing
difference brought by cleaning more transient cache line
installs grows slowly with the increase of branch resolution
time, its proportion in the entire T1-T6 time becomes smaller.
This makes the attacker harder to infer the secret information
and thus finally get a higher bit error probability.

As a result, we should trade off the number of load
instructions in the branch against the attack rate and accuracy.
As demonstrated in Section IV-B, if we do not apply any
optimization to unXpec, the secret-dependent timing differ-
ence grows slowly with the number of loads in the branch.
In this case, because the secret-dependent timing difference is
sufficient to distinguish the secret value even when we place
only one load in the branch, the attacker is more likely to
employ fewer load instructions to achieve higher throughput.
However, after we apply the eviction set to our attack, the
secret-dependent timing difference has been greatly improved.
This guides the attacker to pre-train the adaptive parameters
to balance the secret-dependent timing difference and the time
required for every round of attack.

VI. EVALUATION

Settings. In this section, we evaluate unXpec over the typical
undo scheme—CleanupSpec [34]. Given that undo schemes
have not applied to commercial CPUs yet, we implement
unXpec and run it on gem5 in System-call Emulation (SE)
mode [15]. We run the unXpec attack against the open-source
CleanupSpec [33]. Our unXpec requires that the receiver
share the same cache hierarchy with the sender and observe
CPU stalls caused by cleanup operations by the sender. To
satisfy the first requirement, we pin the receiver and sender
onto the same thread [2], [10], [13], [34], [45]. To satisfy
the second requirement, we configure CleanupSpec with the
Cleanup_FOR_L1L2 mode. We follow all the other con-
figurations as identical as CleanupSpec [34]. Table I summa-
rizes the key settings. Configuration specifics necessary for
understanding will be also discussed along with the reported
measurements.
Results. We validate the feasibility of unXpec by measuring
secret-dependent timing differences. It demonstrates an aver-
age timing difference of 22 cycles and 32 cycles given only
a single load in the branch without and with using eviction
sets, respectively. Both versions of unXpec can sample up to
140,000 time measurements per second on a 2 GHz CPU.
To infer 1,000 randomly generated secret bits, the unXpec

130 140 150 160 170 180 190 200 210 220 230 240 250

Observed Latency (cycles)

0.00

0.01

0.02

0.03

0.04
P
ro

b
a
b
il
it
y

secret = 0 secret = 1

Fig. 7. Probability density function for sender execution time without using
eviction sets, estimated by kernel density estimation [3]. The average secret-
dependent timing difference is 22 cycles.

attacks without and with eviction sets can respectively achieve
an accuracy of 86.7% and 91.6% with only a single sample per
bit. This yields a sufficiently high leakage rate of 140 Kbps.
We validate unXpec’s insensitivity to system noise on an Intel
Core i7-8550U processor.

Furthermore, we investigate the impacts of the most intuitive
countermeasure against unXpec—constant-time rollback—on
computer performance. Experimental results demonstrate that
the constant-time rollback scheme introduces non-negligible
overhead, ranging from 22.4% with 25-cycle constant rollback
time to 72.8% with 65-cycle constant rollback time. This
solicits either a more efficient countermeasure against unXpec
or a more robust safe speculation rather than Invisible and
Undo solutions.

A. Feasibility: Timing Difference

To validate the feasibility of unXpec, we run both unX-
pec versions over CleanupSpec to demonstrate the secret-
dependent timing difference. As discussed in Section IV, a
limited complexity for the branch statement and in-branch
loads suffices to differentiate rollback timings corresponding
to different secret values. We thus set the branch statement
f(N) with only a single memory request and set the in-
branch instructions with only a single load. Specifically, the
related source code segment flushes N and then accesses
N in the branching statement as follows: clflush(&N);
if(index < N), where index is a cached variable. We then
collect the time measurements given different secret values.
When the secret is set zero, the CPU performs no operation
in the cleanup stage. When the secret is set one, the CPU
conducts cleanup operations (e.g., invalidating the transient
cache-line installs and restoring the evictions in the L1 cache)
to rollback the cache states. We collect 1,000 measures for
either case and generate the timing distribution.

Figure 7 and Figure 8 report the probability density function
without and with the optimization enabled, respectively. For
both versions of unXpec, the receiver can observe a noticeable
secret-dependent timing difference. The secret value of one
yields an averagely larger time measurement. This can be
justified by the fact that when the secret is set one, the in-
branch load instructions bring some new data blocks from
memory to cache and thus the CPU must do some cleanup
operations in the subsequent cleanup stage. Furthermore, after
enabling the optimization option in our attack, the observed

130 140 150 160 170 180 190 200 210 220 230 240 250

Observed Latency (cycles)

0.00

0.01

0.02

0.03

0.04

P
ro

b
a
b
il
it
y

secret = 0 secret = 1

Fig. 8. Probability density function for sender execution time using eviction
sets, estimated by kernel density estimation [3]. The average secret-dependent
timing difference is 32 cycles.

timing difference increases from 22 cycles to 32 cycles.
This is because CleanupSpec must additionally access the
lower memory hierarchy to restore the evicted original line.
The preceding observations are in line with our analysis in
Section IV. Based on the timing distribution in Figure 7 and
Figure 8, we respectively choose the observed latency of 178
and 183 as the thresholds of time measurement to differentiate
secrets.

B. Speed: Leakage Rate

To evaluate the leakage rate about unXpec, we measure the
sample rate of time measurements. More specifically, it may
take several samples of time measurements to infer a single
secret bit. The scale of a single time measurement matters for
the overall attack speed. Intuitively, the optimized version of
unXpec takes more time per sample because performing the
prime operations introduces an extra overhead. However, in a
low-noise environment, we only need to prime the sets once.
As long as we bring the cache states into desired states for
the first time, they remain the same at the beginning of each
round of subsequent attacks. This is because that even though
the sender changes the cache states transiently, the sender’s
cleanup operations will rollback all the modified cache states
before the next round of attack starts.

Both versions of unXpec demonstrate a comparative sample
rate around 140,000 samples/second on a 2 GHz CPU. This
promises a leakage rate of 140 Kbps as our unXpec attacks
can achieve a sufficiently high resolution with only one sample
per bit (Section VI-C).

C. Effectiveness: Secret Leakage

Since Undo-based safe speculation such as CleanupSpec has
not been implemented in any commercial machine, we imple-
ment a Meltdown-alike proof-of-concept attack to demonstrate
the effectiveness of both unXpec attacks. For inferring a secret
bit, we first randomly generate a one-bit value in the target
address. The value cannot be directly accessed by the attacker.
The attacker then runs unXpec to steal the secret. Specifically,
it measures the execution time of the sender and compares
the measurement with the pre-defined threshold discussed in
Section VI-B. The attacker guesses the secret bit as 1 if the
time measurement exceeds the threshold and as 0 otherwise.
We repeat the preceding process over a randomly generated
1,000-bit secret as in Figure 9.

0 200 400 600 800 1000

Bit Index

0

1
B
it
V
a
lu
e

Fig. 9. Bit pattern of 1,000-bit randomly generated secrets.

0 200 400 600 800 1000
100

200

300

400

0 20 40 60 80 100

Bit Index

100

200

300

400

guess = 0, secret = 0

guess = 1, secret = 1

guess = 0, secret = 1

guess = 1, secret = 0

L
a
te
n
cy

(c
y
cl
es
)

Fig. 10. The observed latency by the receiver without using eviction sets. Top: all the 1,000 measurements; Bottom: the first 100 measurements and the
corresponding secret inference results in detail.

Figure 10 and Figure 11 report the observed latency and the
corresponding secret guessing results for unXpec and unXpec
with eviction sets, respectively. Specifically, they show the
observed latency over 1,000 bits (top) and the guess results
of only the first 100 bits (bottom) for ease of illustration. We
start with unXpec without using eviction sets. As shown in
Figure 10, most observed latency measurements locate close
to the threshold while a few spread further. Such distribution
complies with the statistics we have reported in Figure 7. In
this case, unXpec accurately guesses 867 secret bits, resulting
in an attack accuracy of 86.7% that is comparative with that
of relevant attacks [2], [3]. Leveraging eviction sets, unXpec
can obtain a larger secret-dependent timing difference. This
makes the secret guessing process less susceptible to back-
ground noise and thus increases attack accuracy. As shown in
Figure 11, unXpec using eviction sets correctly guesses 916
bits, yielding a much higher accuracy of 91.6%.

D. Robustness: Noise Insensitivity

System noise should show little effect on unXpec and
the timing difference observation because of the following
three reasons. First, unXpec relies on the timing difference
originated from the secret-dependent cleanup operations. Since
the CleanupSpec stalls the core upon cleanup operations, the
secret-dependent timing difference exploited by unXpec is not
affected by noise. Second, whether the secret is 0 or 1, the
noise causes the same effect on the remaining execution time
(e.g., branch resolution time). As shown in Figure 13, we

further validate the properties of branch resolution time on the
Intel Core i7-8550U processor. Albeit system noise, different
secrets demonstrate approximate branch resolution timings
and thus the corresponding conclusion in Section IV-A is
practically validated. Combining the above two points, system
noise causes trivial effect on the observed latency including
the branch resolution time and the secret-dependent cleanup
time. Third, following existing attacks [3], [46], the attacker
can also use more samples per secret to suppress noise.

E. Mitigation: Constant-Time Rollback

Finally, we evaluate performance overhead of a potential
unXpec countermeasure that enforces constant rollback time
for undo schemes. Albeit CleanupSpec [34] regards the roll-
back process as hardly exploitable, it also considers constant-
time rollback theoretically secure yet without thorough in-
vestigation. Specifically, if any mis-speculation occurs, we
stall the core for a constant time to execute the cleanup
operations. Even if the CPU finishes the cleanup operations
ahead of schedule or no cleanup operation takes place at all
when transient instructions have not modified cache states, the
CPU should still be stalled until the pre-defined constant time
elapses. However, such a potential countermeasure introduces
non-negligible time overhead and design intricacy.

First, it is challenging to decide the value of the constant
time. According to the measurements in Section IV, rollback
time depends on the amount of cache changes induced by
transient loads meanwhile. This factor, however, can be hard to

0 200 400 600 800 1000
100

200

300

400

0 20 40 60 80 100

Bit Index

100

200

300

400

guess = 0, secret = 0

guess = 1, secret = 1

guess = 0, secret = 1

guess = 1, secret = 0

L
a
te
n
cy

(c
y
cl
es
)

Fig. 11. The observed latency by the receiver using eviction sets. Top: all the 1,000 measurements; Bottom: the first 100 measurements and the corresponding
secret inference results in detail.

�S�H
�U�
�E�H
�Q�F
��B
�U

	�F
�F�B
�U

�P
�F�I
�B�U

��D
��D
�Q�F
�E�P
��B
�U

���
����
�B�U

�G�H
�H�S
�V�
�H�Q
	�B
�U

��H
�H�
�D�B
�U

�H�
�F�
�D�Q
	�H
���B
�U
��
�B�U

�E�
�D�Y
�H�V
�B�U

�F�D
�F�W
�X�%
�6�6
�1
�B�U

��E
�P
�B�U

�
�U�I
�B�U

�F�D
�P
���B
�U

��P
�D	
��F
��B
�U

�Q�D
�E�B
�U

�I�R
�W�R
�Q�
���
�G�B
�U

�U�R
�P
�V�B
�U

�D�Y
�H�U
�D	
�H

������

������

������

������

������

������

������

�6
��R
�
�G
�R
�
�Q

�Q�R �F�R�Q�V�W �F�R�Q�V�W � ���� �F�R�Q�V�W � ���� �F�R�Q�V�W � ���� �F�R�Q�V�W � ���� �F�R�Q�V�W � ����

Fig. 12. Overhead of constant-time rollback with varying constant cycles using SPEC CPU 2017 benchmarks.

1 2 3 4 5
Number of Loads inside Branch

200

300

400

500

B
ra

nc
h

R
es

ol
ut

io
n

Ti
m

e
(c

yc
le

s)

1 access, secret 0
1 access, secret 1

2 accesses, secret 0
2 accesses, secret 1

3 accesses, secret 0
3 accesses, secret 1

Fig. 13. The branch resolution time on an Intel i7-8550U processor.

predict. If the constant rollback time is set too large, the CPU
will suffer from a heavy time overhead and thus significantly
slow down performance.

Second, if the constant rollback time is set smaller than
necessary, a constant-time solution may leave the door open
for speculative execution attacks again. Such a solution follows
two possible design strategies. One is to enforce a strict
time threshold on every rollback. Given a insufficient time
scale, some cache states modified by transient instructions may
not be rollbacked during the cleanup stage. In this case, the

rollback effect is incomplete and leaves the residual cache state
changes exploitable for speculative execution attacks again.
On the contrary, the other constant-time rollback strategy
relaxes the time restriction for rollbacks that require more
time toward no residual speculative cache state. This does
not fully hide the timing difference among rollbacks and is
still vulnerable to unXpec. However, in comparison with the
first strategy, the relaxed one guarantees the complete effect
of CleanupSpec. We thus implement the relaxed constant-time
strategy to protect CleanupSpec and report the measurement
results in Figure 12.

Only a small fraction (e.g., < 5%) of transient load in-
structions change cache states and enforce cleanup operations
[34]. As described above, as long as mis-speculation is de-
tected, we should stall the core for a constant time. However,
CleanupSpec [34] shows that more than 95% of transient loads
hit the L1 cache and need no cleanup operations. In other
words, only less than 5% of transient loads change cache
states and require cleanup operations such as invalidation
and restoration to rollback. Enforcing constant rollback time
inevitably makes the common cases as time-consuming as the
rare cases. According to the rollback-timing difference that
can be measured by the attacker with or without eviction
sets (Figure 3 and Figure 6), we evaluate CleaupSpec with

constant rollback time ranging from 25 cycles to 65 cycles.
Figure 12 reports the overhead of different levels of constant
rollback time using extensive SPEC CPU 2017 benchmarks
[6]. Specifically, the overhead is quantified as the execution
time of constant-rollback CleanupSpec normalized by that of
the unsafe baseline. The average slowdown increases with
the number of cycles enforced as constant rollback time,
ranging from 22.4% with 25-cycle constant rollback time to
72.8% with 65-cycle constant rollback time. Such a significant
overhead necessitates either a more efficient countermeasure
against unXpec or a more robust safe speculation rather than
Invisible and Undo solutions.

VII. CONCLUSION

We have exploited secret-dependent timing differences to
break undo-based safe speculation. The timing difference
arises from whether or not undo operations involve much
restoration (which was deemed as hardly exploitable [34])
of evicted data from the lower-level cache/memory hierarchy
to the L1 cache. We construct our unXpec attack programs
against the representative undo-based scheme called Cleanup-
Spec [34] and demonstrate a 22-cycle secret-dependent timing
difference. Using eviction sets to enforce more evicted cache
lines and thus a longer restoration time, unXpec yields an even
larger secret-dependent timing difference of 32 cycles. This
promises a higher robustness against noise as well as a higher
attack accuracy in terms of correct decoding of secret bits out
of time measurements. We implement unXpec and the evalu-
ation shows that unXpec can leak secrets from CleanupSpec-
enabled systems at a high rate of 140 Kbps with a noise-
insensitive accuracy over 90%. As a potential countermeasure,
simply enforcing constant-time undo operations may induce
a heavy overhead over 70%. All these findings necessitate
exploring more efficient countermeasures against unXpec or
more robust Undo-based safe speculation.

Our future work aims to explore a lightweight defense
using dummy cleanup operations. Inspired by the fuzzy time
technique [14], [18] for mitigating cache side channels, we
can inject dummy cleanup operations to disguise the rollback
time. For example, the CPU can issue dummy loads during
branch resolution or inject random time delays among cleanup
operations. In comparison with enforcing a constant rollback
time (Section VI-E), random noise times may mitigate the
unXpec attack with a lower time overhead. This is because
that it no longer needs to enforce the longest waiting time for
cleanup operations.

ACKNOWLEDGEMENTS

We sincerely thank HPCA 2022 Chairs and Reviewers for
the review efforts and helpful feedback. We also thank HPCA
2022 AEC Chairs and Reviewers for evaluating our artifact
and guiding us toward a comprehensive instruction of running
the artifact and reproducing the results. We would also like to
extend our gratitude to the authors of CleanupSpec for sharing
the source code. We wish everyone health and safety during
the pandemic.

ARTIFACT APPENDIX

A. Abstract

The artifact includes unXpec’s source code and docu-
mentation. In addition, we provide instructions on how to
deploy unXpec on the current state-of-art undo-based safe
speculation—CleanupSpec, alongside scripts to run all exper-
iments and reproduce the reported results.

B. Artifact Check-List (Meta-Information)
• Algorithm: unXpec attacks to evaluate the security of Undo-

based safe speculation (i.e., CleanupSpec) and a constant-time
countermeasure against unXpec to evaluate protection overhead.

• Program: Open-source CleanupSpec as the state-of-the-art
Undo-based safe speculation. (Note that the SPEC CPU 2017
benchmarks of version 1.1.0 used for performance evaluation in
Figure 12 are not included because they are license protected
and can be purchased at https://www.spec.org/cpu2017/.)

• Compilation: Python 2.7, GCC 5, G++ 5, and gem5 dependen-
cies (e.g., protobuf and gperftools), all of which are included.

• Run-time environment: Ubuntu and Docker.
• Execution: Dozens of minutes for attack demonstration and

about ten hours for countermeasure evaluation using the slowest
benchmark.

• Metrics: Execution time in terms of the number of cycles.
• Output: The artifact outputs statistics for generating the

reported results either in console for direct use or in files for
further analysis.

• Experiments: Step-by-step experiment guidelines are provided
in the subsequent sections as well as documented at https://doi.
org/10.5281/zenodo.5771649.

• How much disk space required (approximately)?: 10 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: It takes about two hours to pull two images (about
2 GB, one containing the attack artifact and the other containing
the countermeasure artifact) from Docker Hub.

• How much time is needed to complete experiments (ap-
proximately)?: It takes about half an hour to collect statistics
for attack demonstration (Section VI-A to Section VI-D) and
10+ hours for countermeasure evaluation if sufficient cores (e.g.,
over 20) are available for running benchmarks.

• Publicly available?: The artifact is publicly available at https:
//doi.org/10.5281/zenodo.5771649.

• Archived (provide DOI)?: 10.5281/zenodo.5771649.

C. Description

1) How to access: The artifact is publicly available at https:
//doi.org/10.5281/zenodo.5771649.

2) Hardware dependencies: The experiments results have
no specific hardware dependencies. Yet the results in Sec-
tion VI-D for demonstrating timing differences on a real
CPU need an Intel Core i7-8550U processor to reproduce.
Processors of different models may yield different time mea-
surements while exhibiting exploitable timing differences.

3) Software dependencies:
• Ubuntu 16.04
• gem5 (Commit:39cfb85 from Nov 5, 2018)
• python2.7
• gcc-5, g++-5
• other gem5 requirements (protobuf, gperftools, etc.)
• SPEC2017-1.1.0 (Reference Input)

D. Installation

The artifact installation process requires to first install
Docker via https://docs.docker.com/engine/install/ and then
build two docker images, which are addressed as unxpec:01
and unxpecspec:01 in what follows.

E. Experiment Workflow

The detailed instruction for conducting experiments, collect-
ing statistics, and reproducing the reported results is available
in the file of README.md included in the artifact. Results
reported in Section VI-A, Section VI-B, and Section VI-C
can be reproduced in the docker image unxpec:01. Results
reported in Section VI-E can be reproduced in the docker
image unxpecspec:01. However, results reported in Section VI-
D should be reproduced on a real processor.

For Section VI-A, Section VI-B, and Section VI-C, the
reproduction process first enters the unXpec container created
by unxpec:01 using the following command:
bash run.sh docker
For Section VI-E, a similar self-contained container cannot

be built simply using unxpecspec:01 because the license-
protected benchmarks cannot be included. An additional di-
rectory containing the licensed SPEC CPU 2017 benchmarks
should be mounted to unxpecspec:01 to build the experiment
environment for Section VI-E.

Next, we detail the instruction for reproducing results.
1) Section VI-A: Feasibility - Timing Difference:
• In the docker container created by unxpec:01:
cd /home/gem5/unXpec

• To reproduce the results reported in Figure 7, run unXpec
attack without eviction sets:
bash run.sh TimingDifference
Time measurements corresponding to secret bit 0 and
secret bit 0 are logged in unXpec/TimingDifference/
NoEvictionSet Sec0.txt and unXpec/TimingDifference/
NoEvictionSet Sec1.txt, respectively.
We extract the 1,000 sample measurements from No-
EvictionSet Sec0.txt (lines 29-1028) and assign them
to an array s0. Similarly, we extract the 1,000 sample
measurements from NoEvictionSet Sec1.txt (lines 29-
1028) and assign them to an array s1.
Then we use kernel density estimation built in Matlab to
estimate the probability density functions over s0 and s1,
as shown in Figure 7. The Matlab code is available at
unXpec/TimingDifference/kde.m.

• To reproduce the results reported in Figure 8, run unXpec
attack with eviction sets:
bash run.sh TimingDifference -e
Time measurements corresponding to secret bit 0 are
logged in unXpec/TimingDifference/EvictionSet Sec0.
txt. Time measurements corresponding to secret bit
1 are logged in unXpec/TimingDifference/EvictionSet
Sec1.txt.
We extract the 1,000 sample measurements from Evic-
tionSet Sec0.txt (lines 29-1028) and assign them to an

array s0. Similarly, we extract the 1,000 sample mea-
surements from EvictionSet Sec1.txt (lines 29-1028) and
assign them to an array s1.
Then we use kernel density estimation built in Matlab to
estimate the probability density functions over s0 and s1,
as shown in Figure 8. The Matlab code is available at
unXpec/TimingDifference/kde.m.

2) Section VI-B: Speed - Leakage Rate:

• In the docker container created by unxpec:01:, enter the
unXpec directory:
cd /home/gem5/unXpec

• Run unXpec attack:
bash run.sh LeakageRate

• The measured leakage rate is directly printed on the
console.

3) Section VI-C: Effectiveness - Secret Leakage:

• In the docker container created by unxpec:01:, enter the
unXpec directory:
cd /home/gem5/unXpec

• To reproduce the results reported in Figure 10, run
unXpec attack without eviction sets:
bash run.sh SecretLeakage
The test instance of 1,000-bit randomly generated se-
crets shown in Figure 9 is hardcoded in the attacking
code. The results is logged in unXpec/SecretLeakage/
NoEvictionSet Sample1k.txt.

• To reproduce the results reported in Figure 11, run
unXpec attack with eviction sets:
bash run.sh SecretLeakage -e
The test instance of 1,000-bit randomly generated secrets
shown in Figure 9 is hardcoded in the attacking code. The
result is logged in unXpec/SecretLeakage/EvictionSet
Sample1k.txt.

4) Section VI-D: Robustness - Noise Insensitivity:

• Run the measurement code on a real machine with
Ubuntu OS.
sudo bash run.sh NoiseInsensitivity
The machine used for collecting statistics in Figure 13
uses an Intel Core i7-8550U processor.

• The results are logged in unXpec/NoiseInsensitivity/
finalresult.txt.

5) Section VI-E: Mitigation - Constant-time Rollback:
Run: For Section VI-E, a self-contained container cannot
be built simply using unxpecspec:01 because the license-
protected benchmarks cannot be included. An additional di-
rectory containing the licensed SPEC CPU 2017 benchmarks
should be copied to unxpecspec:01 to build the experiment
environment for Section VI-E. Please refer to the following
steps for copying and running SPEC:

First, put all benchmark files including their executable
files and input files into a directory (addressed as spec dir
subsequently).

Second, copy all files in spec dir to the docker container
created by unxpecspec:01 with following commands:

docker ps to get the container ID (addressed as Con-
tainerID subsequently);
docker cp spec_dir/. ContainerID:/home/gem5
to copy all files in spec dir to the docker container.

In the docker container, enter the gem5 directory:
cd /home/gem5

Then for every benchmark reported in Figure 12, we run
the following command with scheme cleanupcache set as both
UnsafeBaseline and Cleanup_FOR_L1L2 modes:
bash run_gem5spec.sh benchmark_name

maxinst_count startinst_count
scheme_cleanupcache

Most benchmarks set maxinst_count and
startinst_count as 2000000000 and 1000000000,
respectively. While for mcf_r and imagick_r with limited
size or run-time exception, we set their maxinst_count and
startinst_count as 1000000000 and 500000000,
respectively.
Results: Enter /home/gem5/testbenchmark name for statistics
in benchmark name.txt, where benchmark name represents
the benchmark name under test.
Extraction: For UnsafeBaseline mode, extract the fol-
lowing metadata from benchmark name.txt:

• sim_ticks: total time to execute maxinst_count
instructions.

• system.cpu.fetch.startCycles: total time to
execute the first startinst_count instructions.

For Cleanup_FORL1L2 mode, extract the following
metadata from benchmark name.txt:

• sim_ticks: total time to execute maxinst_count
instructions.

• system.cpu.fetch.startCycles: total time to
execute the first startinst_count instructions.

• system.cpu.iew.lsq.thread0.
extraCleanupSquashTimeCyclesXX: extra time
imposed by XX-cycle constant-time rollback on Cleanup-
Spec (only consider the last maxinst_count -
startinst_count instructions).

Calculation: Estimate performance overhead of the last one
billion instructions reported in Figure 12 as follows. (The first
one billion instructions are used to warm up the system.)

• unsafe-time: under UnsafeBaseline mode
sim_ticks - system.cpu.fetch.startCycles

• no-constant: under Cleanup_FORL1L2 mode
without constant-time rollback
sim_ticks - system.cpu.fetch.startCycles

• XX-const: under Cleanup_FORL1L2 mode with
XX-cycle constant-time rollback
sim_ticks - system.cpu.fetch.startCycles
+ system.cpu.iew.lsq.thread0.
extraCleanupSquashTimeCyclesXX

• overhead
no-const or XX-const divided by unsafe-time.

REFERENCES

[1] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in ISCA, 2020, pp.
132–144.

[2] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. Zhao, X. Zou, T. Unterlug-
gauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu, R. Gabor,
C. W. Fletcher, A. Basak, and A. Alameldeen, “Speculative interference
attacks: Breaking invisible speculation schemes,” in ASPLOS, 2021.

[3] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting
speculative execution through port contention,” in CCS, 2019, pp. 785–
800.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, S. Rathijit, S. Korey,
S. Muhammad, V. Nilay, D. H. Mark, and A. W. David, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[5] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“Reload+refresh: Abusing cache replacement policies to perform
stealthy cache attacks,” in USENIX Security Symposium, 2020, pp. 1967–
1984.

[6] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[7] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, B. Jo Van, and Y. Yuval,
“Fallout: Leaking data on meltdown-resistant cpus,” in CCS, 2019.

[8] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security Sympo-
sium, 2019, pp. 249–266.

[9] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
EuroS&P, 2019, pp. 142–157.

[10] M. H. I. Chowdhuryy, H. Liu, and F. Yao, “Branchspec: Information
leakage attacks exploiting speculative branch instruction executions,” in
ICCD, 2020, pp. 529–536.

[11] S. Deng, B. Huang, and J. Szefer, “Leaky frontends: Micro-op cache and
processor frontend vulnerabilities,” arXiv preprint arXiv:2105.12224,
2021.

[12] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Transactions on Architecture and Code Opti-
mization, vol. 8, no. 4, pp. 1–21.

[13] J. Fustos, M. Bechtel, and H. Yun, “Spectrerewind: Leaking secrets to
past instructions,” in CCS Workshop - ASHES, 2020, pp. 117–126.

[14] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[15] gem5, “gem5.” [Online]. Available: http://www.gem5.org
[16] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote

software-induced fault attack in javascript,” in DIMVA, 2016, pp. 300–
321.

[17] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[18] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of
Computer Security, vol. 1, no. 3-4, pp. 233–254, 1992.

[19] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in DAC, 2019, pp. 1–6.

[20] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[21] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, S. Michael, and Y. Yuval,
“Spectre attacks: Exploiting speculative execution,” in S&P, 2019, pp.
1–19.

[22] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
WOOT, 2018.

[23] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yuval, and R. Mike Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018, pp. 973–990.

[24] F. Liu and R. B. Lee, “Random fill cache architecture,” in MICRO, 2014,
pp. 203–215.

[25] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in S&P, 2015, pp. 605–622.

[26] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy, and
B. Kasikci, “Dolma: Securing speculation with the principle of transient
non-observability,” in USENIX Security Symposium, 2021.

[27] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in CCS, 2018, pp. 2109–2122.

[28] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the other side: Ssh over robust
cache covert channels in the cloud.” in NDSS, 2017.

[29] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in CCS, 2015, pp. 1406–1418.

[30] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ Track at the RSA Conference.
Springer, 2006, pp. 1–20.

[31] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in MICRO, 2018, pp. 775–787.

[32] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat,
“I see dead µops: Leaking secrets via intel/amd micro-op caches,” 2021.

[33] G. Saileshwar, “cleanupspec.” [Online]. Available: https://github.com/
gururaj-s/cleanupspec

[34] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo” approach
to safe speculation,” in MICRO, 2019, pp. 73–86.

[35] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in ISCA, 2019, pp. 723–735.

[36] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in ESORICS, 2019, pp.
279–299.

[37] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp. 37–71,
2010.

[38] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in USENIX Security Symposium, 2018, pp. 991–1008.

[39] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in S & P. IEEE, 2020.

[40] J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening pandora’s box: A
systematic study of new ways microarchitecture can leak private data,”
2021.

[41] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in S&P, 2019, pp. 39–54.

[42] Y. Wu and X. Qian, “Reversispec: Reversible coherence protocol for
defending transient attacks,” arXiv preprint arXiv:2006.16535, 2020.

[43] W. Xiong and J. Szefer, “Leaking information through cache lru states,”
in HPCA, 2020, pp. 139–152.

[44] W. Xiong and J. Szefer, “Survey of transient execution attacks and their
mitigations,” CSUR, vol. 54, no. 3, pp. 1–36, 2021.

[45] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in MICRO, 2018, pp. 428–441.

[46] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence pro-
tocol states vulnerable to information leakage?” in HPCA, 2018, pp.
168–179.

[47] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Security Symposium, 2014,
pp. 719–732.

