
Symphony: Path Validation at Scale

Anxiao He
Zhejiang University
zjuhax@zju.edu.cn

Jiandong Fu
Zhejiang University

jiandongfu@zju.edu.cn

Kai Bu⋆
Zhejiang University
kaibu@zju.edu.cn

Ruiqi Zhou
Zhejiang University
rqzhou@zju.edu.cn

Chenlu Miao
Zhejiang University
clmiao@zju.edu.cn

Kui Ren
Zhejiang University
kuiren@zju.edu.cn

Abstract—Path validation has long been explored as a funda-
mental solution to secure future Internet architectures. It enables
end-hosts to specify forwarding paths for their traffic and to
verify whether the traffic follows the specified paths. In compar-
ison with the current Internet architecture that keeps packet
forwarding uncontrolled and transparent to end-hosts, path
validation benefits end-hosts with flexibility, security, and privacy.
The key design enforces routers to embed their credentials into
cryptographic proofs in packet headers. Such proofs require
sufficiently complex computation to guarantee unforgeability.
This imposes an inevitable barrier on validation efficiency for
a single packet. In this paper, we propose aggregate validation
to implement path validation in a group-wise way. Amortizing
overhead across packets in a group, aggregate validation promises
higher validation efficiency without sacrificing security. We im-
plement aggregation validation through Symphony, with various
design techniques integrated and security properties formally
proved. In comparison with state-of-the-art EPIC, Symphony
speeds up packet processing by 3.78×∼18.40× and increases
communication throughput by 1.13×∼6.11×.

I. INTRODUCTION

Path validation promises a fundamental solution to secure
future Internet architectures. It is propelled by the Path-Aware
Networking Research Group (PANRG) [27], [30] under the
Internet Engineering Task Force (IETF) and Internet Re-
search Task Force (IRTF). SCIONLab [15], [34]—a global
research network—has already deployed path-validation–
enabled routers into the Internet architecture for practice. In
a nutshell, path validation secures packet forwarding with
two complementary functionalities, path enforcement and path
verification [7], [11]. Path enforcement specifies the designated
path a packet should follow in the packet header. On-path
routers are expected to adhere to the packet-carried path
indicator for making forwarding decisions. However, malicious
or compromised routers may mis-forward packets away from
the specified path [9], [10], [33], [36], [39]. Such packet mis-
forwardings tend to degrade performance and breach security
[7]. Therefore, path validation further necessitates the other
functionality—path verification. It verifies whether packet for-
warding strictly follows the specified path. To this end, on-
path routers embed unforgeable cryptographic proofs into the
packet header. Such proofs should suffice for validating that

⋆Kai Bu is the corresponding author.

a packet traverses not only all the on-path routers but also in
the correct order [33].

Security and efficiency requirements impose an intrinsic
dilemma on path validation solutions. Security requires long
proofs and complex computation to make proofs hard to forge.
However, efficiency requires short proofs and simple compu-
tation to control the overhead of packet transmission in links
and packet processing on routers (Section VII). The dilemma
between security and efficiency has already led to an efficiency
bottleneck for the evolution of path validation solutions. No
matter whether symmetric or asymmetric cryptography is used
to compute proofs, the key length and associated proof size are
lower-bounded given a required security level.

State-of-the-art path validation solutions have to trade off
security for efficiency. For example, PPV [48] requires that
packets be validated by only two randomly chosen adjacent
routers rather than every router on the forwarding path. Each
packet thus can testify its forwarding correctness on a path
segment. A sufficient number of packets from the source to
the destination can jointly reflect the forwarding behavior of
the entire path. However, it does not satisfy the security re-
quirement of hop-wise validation. To explore efficiency while
maintaining hop-wise validation, the state-of-the-art EPIC [36]
requires that routers embed only the leading bytes of their
proofs in the packet header. Shorter proofs are more vulnerable
to proof forging attacks [36]. Its hop-wise validation therefore
leads to weakened security.

In this paper, we propose aggregate validation for efficient
yet secure path validation. It validates path compliance during
packet forwarding in a group-wise way. In contrast to existing
packet-wise validation, aggregate validation aggregates a group
of packets and uses them together as a single input for
computing path proofs. The proofs are then distributed across
packets in the same group. We can thus amortize validation
overhead to improve efficiency yet without sacrificing security.
We propose various techniques to achieve correct and efficient
packet aggregation and implement them through Symphony.
We also suggest a hardware queuing logic using static random-
access memory (SRAM) for Symphony-enabled routers.

We implement Symphony using the Data Plane Develop-
ment Kit (DPDK) [28]. We then carry out extensive exper-
iments on both a local server and a multihop testbed using
rented servers from Alibaba Cloud [17]. The experimental
results show that Symphony can outperform the state-of-the-art
EPIC [36] with faster packet processing and higher communi-
cation throughput. Specifically, the reduction of construction
time ranges from 39.51% (Symphony with a 2-packet group) to
93.78% (Symphony with a 16-packet group). The processing
speedup on routers increases to 18.40× when Symphony

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23104
www.ndss-symposium.org

with 16-packet groups is deployed. Symphony can achieve
a 9.19 Gbps throughput given a single-core machine within
a 10 Gbps link, being 6.11× higher than that of EPIC. We
further measure the retransmission performance of Symphony
given packet losses. Symphony can yield higher throughput
than EPIC does even when the packet loss rate reaches a
practical high like 10%.

In summary, we make the following major contributions to
efficient path validation.

• Propose an aggregate validation technique and imple-
ment it through Symphony to fundamentally improve
the efficiency of path validation without sacrificing
security (Section III and Section IV). Aggregate val-
idation yields not only shorter proofs per packet but
also less queuing time per packet than existing packet-
wise validation does.

• Model and validate Symphony throughput given
packet losses (Section III and Section VI). Symphony
can still outperform the state-of-the-art packet-wise
path validation solution under practically high packet
loss rates. To further prepare Symphony for disruptive
network conditions with even higher packet loss rates,
we explore a packet reaggregation technique that
enables an intermediate router to function as a new
source and re-initiate aggregation validation over the
remaining verified packets of a group. Retransmission
is then necessary for only lost packets instead of all
the groups they pertain to.

• Prove the security and evaluate the performance
of Symphony using the DPDK [28] on a local
server as well as a multihop testbed (Section V
and Section VI). In comparison with state-of-the-
art EPIC [36], Symphony speeds up packet process-
ing by 3.78×∼18.40× and increases communication
throughput by 1.13×∼6.11×.

II. PROBLEM

In this section, we define path validation and review its
performance requirements for security and efficiency. Related
notations and abbreviations are defined in Table I. Security
requirements enforce sufficiently complex computation such
that path validation is robust against various attacks. However,
this leads to an efficiency barrier that can hardly be overcome.
State-of-the-art path validation solutions have to trade security
for efficiency (Section VII).

A. System Model

Path validation requires that the Internet architecture be
incorporated with lightweight enhancements [33], [36], [39].
Specifically, these enhancements allow end-hosts to select
forwarding paths and, together with on-path routers, to enforce
and verify path compliance. First, the Internet architecture
should be enhanced to authorize path selection requests from
end-hosts. The authorization can rely on either an independent
centralized authority [39] or collaborative distributed routers
[36]. The granularity of the authorized paths has two levels.
A fine-grained path consists of all the routers across different

TABLE I. DEFINITION OF NOTATIONS AND ABBREVIATIONS.

Notation Definition

Φ path consisting of routers (R0, ..., Ri, ..., Rn)
n length of path (R0, ..., Ri, ..., Rn)
S source node, that is, R0

D destination node, that is, Rn

Ri on-path router for i ∈ [1, n − 1]
Ki shared symmetric key between R0 and Ri

G the group of packets
m size of a packet group, that is, the number of packets in the group
Pi the ith packet of a group, where i ∈ [1,m]

GP group payload concatenated by all the payloads in a group
σ proof field for Ri to compute proof
Vi proof field for Ri to verify source and path

H(·) cryptographic hash function
MACK(·) message authentication code (MAC) using key K

|| concatenation of strings
Ψ(G,Ri) validation function on router Ri over packet group G

r state of received packets on routers
s state of sent packets on routers

Autonomous Systems (ASes). It takes into account both intra-
AS and inter-AS forwarding reliability. In contrast, a coarse-
grained path abstracts each AS into a single node and focuses
on only inter-AS forwarding [36]. Different path granularities
impose no significant impact on the design of path validation
solutions. We follow the commonly adopted inter-AS path
model as in the literature [33], [36]. Second, routers need to
update the packet process logic in favor of packet headers
with embedded path proofs. Finally, end-hosts per se need also
to update protocol stacks for requesting paths and processing
packets (e.g., encapsulation and parsing).

B. Threat Model

Path validation defends against an active Dolev-Yao at-
tacker [19] that conducts packet mis-forwardings while trying
to forge valid path proofs [33], [36], [39]. The attacker can be
a malicious router per se or a router hijacked by the attacker.
A packet mis-forwarding occurs whenever the attacker directs
a packet without strictly following its specified path. For
example, the attacker may sidestep a certain router to evade
its connected packet inspection service. Moreover, the attacker
may direct packets across on-path routers in a different order
than is required. This also tends to breach security policies
[8]. To make a mis-forwarded packet pass path validation, the
attacker intends to forge its path proofs such that the forged
proofs are deemed valid on routers or end-hosts.

C. Security Requirements

At the heart of path validation lies two critical security
requirements, proof unforgeability and hop-wise validation.
Proof unforgeability is a must for security and correctness of
path validation. Only when path proofs are hard to forge can
mis-forwarded packets be detected and filtered. Hop-wise vali-
dation aims to filter mis-forwarded packets as soon as possible
instead of postponing packet filtering to the destination. This
helps to minimize security impacts and resource wastes that
might be caused by in-network mis-forwarded packets.

Following a commonly used network-security formal-proof
method called Protocol Composition Logic (PCL) [42], [50],
we define the predicate (goodV n S D path pkt key1 key2 t)
to indicate that a packet with payload pkt has passed verifica-
tion using key key1 and updated the proof using key key2 in
the nth router on a path path with source S and destination
D at time t. Table II defines other related predicates.

2

TABLE II. DEFINITION OF PREDICATES IN FORWARDING.

Predicate Definition

honest R R is a trusted node of either the source, destination, or intermediate on-path routers
owner i rt router rt owns the thread i responsible for processing the packet

pathT Φ R n router R is the nth hop on path Φ
Session S D Φ keys S and D have agreed on a session to forward packets along path Φ with related router keys keys

recv i rt (S,D,Φ, pkt, proofr) tr router rt has received the packet that consists of payload pkt and proof header proofr following the path Φ at
time tr in thread i

send i rt (S,D,Φ, pkt, proofs) ts router rt has sent the packet that consists of payload pkt and proof header proofs following the path Φ at time
ts in thread i

acceptRt i pkt proofr rt′ key ta thread i has accepted the packet that consists of payload pkt and proof header proofr using key key at time ta

goodV 0 S D Φ pkt ∼ K1 t
honest R pathT Φ R n+ 1 owner i R

if n = 0 then rt′ = S

if n = n′ + 1 then pathT Φ rt′ n

recv i rt′ (S′, D′,Φ′, pkt, proofr) tr

send i rt′ (S′, D′,Φ′, pkt, proofs) ts

tr < t ts < t tr < ts

goodV n S D path pkt Kn−1 Kn t

goodV n+ 1 S D path pkt Kn Kn+1 t

In the base case when n = 0, it indicates no requirements for
the source. Otherwise, suppose that Rj and Rj+1 are the jth
and (j+1)th routers on path Φ. If Rj+1 is honest, there exist
two times—tr and ts—that router Rj+1 receives the packet
from Rj at time tr and sends the packet out at time ts. The
additional requirement is that the behavior on Rj should be
correct. If Rj+1 is dishonest, it behaves according to the threat
model defined in Section II-B and no requirement is enforced
on it.

Requirement 1. The security requirement of path validation:
∀S,D,Φ, rt, pkt, keys, proofr, ta, i, rt

′, s.t. :

Session S D Φ keys

honest S,honest rt

owner i rt acceptRt i pkt proofr rt′ Kn−1 ta

∃n, j,ms, ts, proofs, s.t. :

goodV n S D path pkt Kn−1 Kn ta

ts < ta owner j S

proofs = macMsg Kn proofr

send j rt′ (S′, D′,Φ′, pkt, proofs) ts

Requirement 1 states the basic procedure of path validation.
If a router accepts a packet, then the packet must have a
source-originated payload pkt and has traversed all the source-
designated honest routers in the right order with correctly
verified and updated proofs. This way, Requirement 1 indi-
cates exactly the two aspects of security requirements: proof
unforgeability and hop-wise validation.

• Proof unforgeability. Since path validation uses path
proofs to encode packet forwarding trajectories, proof
construction schemes should be sufficiently secure.
Specifically, the attacker forges as many proofs as
possible in the hope that one of them can pass verifica-
tion [36]. A common countermeasure should enforce
a sufficiently high security level.

• Hop-wise validation. A mis-forwarded packet may
associate with security risks and should not wander

in the network or reach the destination. Hop-wise
validation requires each on-path router to verify the
path compliance on all its upstream routers. Once a
mis-forwarded packet is detected, it should be im-
mediately discarded. This also helps to economize
network resources in that if mis-forwarded packets
are not discarded, they will keep consuming network
resources such as link bandwidth and router storage.

Non-security goals. Path validation does not aim to address
the following security concerns [39]. The attacker copies
packets and may further send these copies somewhere else
for traffic monitoring and correlation. The attacker modifies
packets. This is orthogonal to path validation and can be
easily mitigated by integrity check. The attacker does not
execute promised processing services on received packets other
than simply forwarding them. This is also orthogonal to path
validation. A feasible countermeasure uses probe packets with
predictable processing results for attestation [7]. The attacker
may even drop packets. Dropped packets can be retrieved by
retransmission. Finally, path validation considers only the secu-
rity of the data plane rather than that of the control plane [36],
[47]. It assumes that forwarding paths dictated by the control
plane are trusted and verifies whether the actual forwarding
path complies with the dictated one. It is secure routing that
guarantees the trustworthiness of path computation on the
control plane [32], [38], [45]. Secure routing is orthogonal to
secure forwarding [7], [47] using path validation and is beyond
the scope of this paper.

D. Efficiency Requirements

There are two ultimate efficiency requirements for network
communication augmented with path validation—throughput
and goodput [33], [36]. Throughput reflects how many packets
can be transmitted in a certain time period. Goodput reflects
how many payloads can be encapsulated in these packets. A
high communication efficiency expects both throughput and
goodput to be high.

Throughput. It quantifies the bandwidth consumed for trans-
mitting packets augmented with path proofs [33].

Goodput. It quantifies the bandwidth consumed for transmit-
ting packet payloads, which are the essential ingredient in data
transmission. Given a fixed throughput, a higher ratio of the
packet payload to the packet length yields a higher goodput.
Therefore, we require that the proof size be sufficiently small
to gain a high payload ratio.

III. OVERVIEW

In this section, we explore an aggregate validation tech-
nique to fundamentally improve the efficiency of path val-
idation without sacrificing security. It advocates group-wise

3

validation and takes a group of packets as a single input for
computing the path proof. The proof is then evenly distributed
across these packets. The aggregate validation technique yields
not only shorter proofs per packet but also less queuing
time per packet than existing packet-wise validation does. We
implement it through Symphony, highlighting key strategies in
this section and presenting design details in Section IV.

A. Aggregate Validation

We explore the aggregate validation technique toward effi-
cient and secure path validation. Unlike existing packet-wise
validation, it improves efficiency by simultaneously validating
a group of packets. We observe that the efficiency barrier over
existing path validation solutions is mainly because they grad-
ually improve efficiency from the perspective of an individual
packet. No matter how the associative cryptographic schemes
can be optimized, they have to be sufficiently secure against
various attacks. This enforces an inevitable lower bound of
overhead for embedding sufficiently long path proofs in packet
headers and for performing sufficiently complex computation
for generating, verifying, and updating the proofs. The ef-
ficiency barrier induced by packet-wise validation motivates
us to explore the other perspective—aggregate validation. It
aggregates a group of packets as an independent packet, which
is then taken as the input of our path validation protocol. The
proof and the associative computation cost are evenly amor-
tized over these packets. This promises a shorter proof and
faster validation per packet, exactly what a higher efficiency
requires. Furthermore, by simply treating a group of packets
as an aggregate packet, aggregate validation does not weaken
any security constraint.

Shorter proofs supported by aggregate validation improve
not only efficiency but also practicality of path validation.
Proof size continues to be a major optimization target. Proof
fields of traditional solutions using symmetric key encryption
increase with path length. They tend to take too much space
in the packet header and squeeze the space for the payload.
For example, ICING [39] requires 42 more bytes per hop for
a proof. Consider the 1,500-byte maximum transmission unit
(MTU) limit [26]. It only takes 11 hops to run out of the space
while the median length of network paths is nearly 16 hops
[40]. Note that simply extending the MTU is not a fundamental
fix. Once the MTU is set to whichever value, it becomes
the new upper bound that limits the maximum path length
a validation solution can support. The MTU cannot be set too
large either. A moderate scale is vital for agile scheduling
among connections that multiplex the same link [37]. EPIC
[36] explores a workaround to greatly reduce the per-hop proof
size to five bytes, which is taken from the entire proof and
vulnerable to brute-force attacks. It does not shorten the proof
for the destination such that any undetected invalid proofs on
routers can be detected on the destination. This may not satisfy
the hop-wise validation requirement. In contrast, our aggregate
validation technique achieves shorter proofs by jointly validat-
ing a group of packets as one. The essential benefit of using
packet groups is to amortize validation overhead to improve
efficiency. This offers much speedup than traditional solutions
that validate packets individually (regardless of whether the
MTU of each packet is extended). Furthermore, distributing
proofs across packets in the same group can save packet space

2. Verify 3. Update

4. Transfer1. Fetch

Fig. 1. Symphony architecture with aggregate path validation. Routers process
packets in a group-wise way.

and, in turn, improve throughput. Aggregate validation thus
guarantees secure path validation in a practically efficient way.

The feasibility of aggregate validation can be guaranteed
by the high transmission rate of network traffic. Intuitively, if
the transmission rate is low, a router may wait a while until
sufficient packets constituting a group arrive. If the waiting
time is too long, it may outweigh the aforementioned effi-
ciency improvements that path validation offers. Fortunately,
the transmission rate in modern networks is sufficiently high.
It is practical that router queues may be constantly filled with
a large number of packets [6]. This makes it feasible for a
router to fetch a group of queued packets without having to
wait as when insufficient packets are queued. Furthermore,
path validation introduces additional operations than traditional
packet processing does. This intrinsically makes even more
packets than usual to be queued on routers. In other words,
path validation makes packets stay a longer time in queues.
Existing solutions shorten this waiting time only by trying to
speed up the validation operations on each individual packet.
In contrast, the aggregation validation technique we propose
simultaneously fetches a group of packets from the queue and
directly removes the waiting time interleaved among them.

B. Symphony Protocol

We propose Symphony, the first path validation protocol
that leverages aggregate validation to improve efficiency with
guaranteed security. Figure 1 illustrates the framework of
Symphony using a 2-packet group for example. At a high level,
the packet processing logic of Symphony on routers revolves
around the following four major steps.

Step 1: The router fetches a group of packets from the input
queue.

Step 2: The router takes the entire group of packets as a single
input and computes path validation proofs. Then it extracts the
carried proofs from all packets and concatenates them. Finally,
the router verifies proof validity by comparing the computed
proof with the concatenated one. If they match, then the entire
group of packets passes validation.

Step 3: If validation succeeds, the router further updates the
packet proofs with its own credential integrated. The router still
takes the entire group as a single input for proof computation.

4

The computed proof is evenly distributed across the packets
of the same group, replacing the original proof.

Step 4: Finally, the router places the group of verified packets
that carry updated proofs in the output queue.

Router-queue logics. In comparison with traditional validation
per individual packet, Symphony using aggregate validation
requires that router-queue logics support grouping and sorting
operations over queued packets. Implementing such logics
would be a hardware design question of various possible
choices. We hereby suggest an SRAM-based solution and leave
the exploration of other design choices to the practitioners
of our Symphony protocol. Specifically, the original first in,
first out (FIFO) queue on a router stores a series of packets
mixed from different groups. Queued packets of the same
group may possibly be out of order. We suggest mounting
a small SRAM to facilitate grouping and sorting packets from
the queue. SRAM chips feature fast and random accesses. To
support Symphony, the mounted SRAM features a g×m grid
of cells, where g denotes the number of groups the queue can
hold and m denotes the number of packets per group. Each
SRAM cell stores validation metadata of a queued packet.
The ultimate goal is to fetch one packet after another from
the FIFO queue and place them in a group-wise ordered
fashion to the SRAM. Each group (indexed with GroupTag in
Section IV-B) is assigned to a specific SRAM row. Within each
row, metadata of a packet in this group (indexed with OrderTag
in Section IV-B) are stored in the cell with the column index
being equal to OrderTag, which tracks the order of packets
in a certain group. This way, both grouping and sorting are
addressed.

C. Packet Aggregation

A major challenge for packet aggregation is to correctly
identify packets of the same group and preserve the order used
by the source for computing proofs. Without careful design,
these two requirements may not be guaranteed. Given the
high transmission rate and intricate network topology, a router
constantly receives a large volume of packets from various
input ports. This easily induces inter-group packet mixing on
the router. Furthermore, it is normal that multi-core routers
perform parallel processing on packets. Packet A arriving in
the input queue earlier than packet B may reach the output
queue later than packet B. This leads to intra-group packet
disordering on enroute routers.

We introduce hierarchical tags in packet headers to address
the challenges of inter-group mixing and intra-group disorder-
ing (Section IV-B). Note that all such header fields and those to
be used hereafter belong to the Symphony header we introduce
between the Internet Protocol (IP) and Transmission Control
Protocol (TCP) headers (Section IV-A). The Symphony header
consists of all the fields for our Symphony to compute and
verify path proofs. It is a convention in existing solutions to
place such path-validation proof fields between the IP and
TCP headers [24], [33], [36], [39]. This renders path-validation
implementation feasible for modular design and simplifies the
upgrade of protocol stacks for packet processing on routers.

Now let us focus on how our introduced fields of hi-
erarchical tags deal with inter-group mixing and intra-group
disordering in particular. First, we assign packets of the same

IP Header

Symphony
Header

TCP Header

SessionID

GroupTag

OrderTag

GroupSize

Timestamp*

DataHash (part)

SymphonyProof

𝜎 (part)

V1 (part)

V2 (part)

Vn (part)

Payload

Fig. 2. Symphony header structure. Notations ‘*’ and ‘part’ mean that the
corresponding field is entirely stored in the first packet of a group and evenly
divided into each packet of a group, respectively.

group with an identical group tag. Second, for same-group
packets, we further assign them with different order tags.
Consider a 10-packet group for example. The order tags for
packets in this group can be assigned with values ranging
from 0 to 9. Order tags can be reused across different groups.
However, we should use group tags together with the source
and destination IP addresses for uniquely classifying packet
groups. More specifically, path validation solutions introduce
a SessionID header field to specify the binding of two commu-
nication end-hosts and the forwarding path designated to them
in a session. We thus use SessionID and group tags in the
Symphony header to differentiate groups. Because different
sources can hardly coordinate, it is challenging to count on
them to guarantee the uniqueness of group tags. Group tags
from different sources are possibly collided. Such collisions
lead to inter-group packet mixing as well. We address this
issue by a two-step packet classification method. The first step
classifies packets according to their SessionID. The second
step classifies packets using their group tags. For the same
source-destination connection, we can reuse group tags if their
associated packets have a sufficient time interval and do not
overlap on routers.

Furthermore, packet losses impose a potentially tougher
challenge on Symphony than on existing solutions because
one lost packet fails verification of an entire group and thus
necessitates retransmission of the entire group. This might also
lead to network congestion. We follow the TCP Bottleneck
Bandwidth and Round-trip propgation time (BBR) model
[13], [14], [46] to quantify the impacet of packet loss rates
(Section VI-J). Symphony can still yield higher throughput
than the state-of-the-art does given practically high packet loss
rates.

IV. DESIGN

In this section, we detail Symphony design atop the aggre-
gate validation technique.

A. Header Structure

As with existing path validation solutions [24], [33], [36],
[39], we place a Symphony header between the IP header and
TCP header (Figure 2). It consists of seven fields—GroupTag,
OrderTag, GroupSize, SessionID, Timestamp, DataHash, and

5

SymphonyProof. These fields fall into five categories with
respective purposes. SessionID specifies a communication ses-
sion between the source and destination. It also serves as a
path indicator, dictating routers on which path to follow for a
session of communication traffic. GroupTag, OrderTag, and
GroupSize cluster and order packets in the same group of
a certain session. Timestamp demonstrates packet freshness.
DataHash protects packet integrity. SymphonyProof encapsu-
lates the cryptographic path proofs constructed by Symphony.

SessionID: It is negotiated by the source and destination to
track traffic in a communication session. In path validation,
the source and destination can negotiate a path they prefer to
follow for each session [33]. We carry SessionID in the packet
header while storing it and the corresponding path information
on routers. This not only saves header space but also improves
processing efficiency. Against the rerouting attack, we use
SessionID as an input for computing SymphonyProof.

GroupTag, OrderTag, and GroupSize: These fields are
initialized at the source (Section IV-B). GroupTag specifies
the group that a packet belongs to. OrderTag specifies the
ordering index of the packet in the group. GroupSize specifies
the number of packets in a group. It can be omitted if the group
size is globally fixed. However, different sources may have
different preferences. The same source may also have different
preferences under different connection status or communica-
tion applications. Therefore, we explicitly include GroupSize
in the header as an adjustable parameter. This facilitates routers
to collect the correct number of packets for a group on the fly.
Furthermore, upon a packet loss, GroupSize can help routers
to detect whether a group of packets is complete on the fly.

Timestamp: It records the time when a group of packets is
generated at the source and reflects packet freshness. When a
router receives a packet, it needs to make sure that its Times-
tamp be reasonably recent. Timestamp also helps to prevent
replay attacks [33] and should be fed into the computation of
SymphonyProof. Timestamp is stored only in the first packet
of a group as it is shorter than other commonly used fields
such as SessionID and DataHash.

DataHash: It aims to support integrity check in a group-
wise way. Specifically, we concatenate the payloads of all
packets in a group to form a group payload GP . We then
calculate DataHash—H(GP)—using a hash function H(·)
that is shared by all end-hosts and routers. To prevent malicious
routers from modifying payloads and forging DataHash, we
require that DataHash be computed into SymphonyProof as
well. We distribute DataHash evenly across the packets that
are used to compute it instead of stacking it entirely to the
first packet. We merge them together upon verification. Such
a group DataHash promises a higher goodput than existing
solutions with packet-wise hash do. Furthermore, it increases
the difficulty for the attacker to forge payloads to satisfy a
given DataHash because DataHash depends on a group of
packets instead of only one.

SymphonyProof: As the key building block of a Symphony
header, it is the only cryptography-protected field. Sympho-
nyProof further consists of two types of fields, update field
σ and verification field Vi (including VD). Both types of
fields are initialized by the source (Section IV-C). Vi is fixed
during packet transmission and serves as an assurance of

forwarding packets along the designated path. In contrast, σ is
used to compute Vi per hop and thus needs to be updated
by intermediate routers. The computation also involves the
aforementioned SessionID, Timestamp, and DataHash (Algo-
rithm 1). We distribute both σ and Vi across packets.

B. Packet Aggregation

Aggregate validation depends on correct and efficient
packet aggregation. Once the source computes path proofs over
an ordering group of packets, it is critical for routers and the
destination to collect the same group of packets in the same
order to pass validation. We introduce three header fields to
support correct and efficient packet aggregation—GroupTag,
OrderTag, and GroupSize. GroupTag and OrderTag specify the
group that a packet belongs to and the ordering index in the
group that a packet associates with, respectively. GroupSize
following GroupTag and OrderTag explicitly specifies the
number of packets in the group. This helps routers and end-
hosts to determine how many packets to collect for a group,
especially when GroupSize is an adjustable system parameter.

GroupTag. Each group should be uniquely identified against
inter-group mixing. To explore an efficient way for uniquely
identifying groups, we observe that the fields of source IP
address, destination IP address, and SessionID can already
uniquely identify a session. What we further need is to intro-
duce GroupTag that can differentiate groups within a session.
Moreover, SessionID is 16 bytes and has a negligible collision
probability of 1/2128. It alone suffices to uniquely identify
a session. Therefore, we can use SessionID and the newly
introduced GroupTag to uniquely identify groups.

It is critical to set an appropriate length of GroupTag to
avoid GroupTag collision in the same session. We classify
groups using SessionID and GroupTag. If GroupTag is too
short, the source will quickly reuse earlier GroupTag. A
router may incorrectly classify groups when its queue contains
packets from different groups yet with the same SessionID and
GroupTag. To avoid such a collision, we require that when
a packet with a reused GroupTag reaches the router next to
the source, any packet with the same GroupTag should have
already been processed and dequeued from the router. Let
GroupTag and OrderTag be t bits and s bits, respectively.
The maximum number of packets without group collisions is
2t+s. Consider an extra packet following the 2t+s packets. The
2t+s +1 packets have a GroupTag collision between the extra
packet and the first group in the packet stream. To avoid this
collision, we need to satisfy the constraint:

(2t+s + 1)× delaytransmission

2s × delayprocessing
> 1, (1)

where delaytransmission denotes the time span from the first bit
of a packet reaches the router to the ending bit of the packet
is queued and delayprocessing denotes the time for the packet
to be processed by the router. As will be discussed shortly,
GroupSize of 8 bits suffices to satisfy practical queue lengths
on routers. Together with the measured transmission delay and
processing delay in Section VI, we observe that GroupTag of
8 bits suffices to avoid group collisions in the same session.

OrderTag. Packets of the same group should also be ordered
exactly the same as the source follows to compute path proofs.

6

TABLE III. EXAMPLE OF PACKET AGGREGATION.

Packet SessionID GroupTag OrderTag GroupSize

A S1 1 0 3
B S1 1 2 3
C S2 2 2 4
D S1 1 1 3

GroupTag supports packet ordering by explicitly specifying
the ordering index of a packet in a group. We set the length
of GroupTag to 8 bits considering the practical constraint of
queue size on routers. If a group has too many packets, it
would occupy excessive queue space and leave little room
for other groups. In this case, the incoming packets might be
dropped due to the drop tail effect [6]. This induces packet
retransmission and corresponding overhead to end-hosts and
routers. Given that the commonly used limit for queue size on
routers is 140 [22], an 8-bit OrderTag can support up to 256
packets per group and suffices to record different packets.

GroupSize. We further augment GroupTag and OrderTag with
GroupSize to instruct routers about the exact number of pack-
ets to collect for a group. It shares the same length with that
of GroupTag such that it can support the maximum value of
OrderTag. A major benefit of using an explicit GroupSize is to
make group size an adjustable parameter. In comparison with
a globally fixed group size, an adjustable one enables sources
to choose the group size that can best suit its requirements for
service and performance quality.

Example of packet aggregation. For ease of understanding,
Table III shows an example of how a router uses the three
fields—GroupTag, OrderTag, and GroupTag—together with
SessionID to identify packets of the same group in the correct
order out of out-of-order packets. We consider four packets
belonging to two groups, where packets A, B, and D form
a complete group. After the router identifies packet A, it
classifies its group using GroupTag of 1 and SessionID of S1.
Since packet A associates with OrderTag of 0 and GroupSize
of 3, the router knows that it is the first packet of a group of 3
and two more packets await to complete the group. The router
then meets packet B with the same SessionID and GroupTag
with that of packet A. However, a disorder arises as OrderTag
of packet B is 2 instead of 1 that follows 0 of packet A.
OrderTags help the router to notice the packet disorder and
GroupSize helps the router to wait for one more packet from
this group. Then it comes packet C that has different GroupTag
and SessionID from that of packets A and B. The router omits
packet C and proceeds to identify subsequent packets in the
queue. Finally, the router identifies that packet D has the same
SessionID and GroupTag with that of packets A and B. Packet
D thus brings forward the third packet to complete the group.
Using OrderTags of packets A, B, and D, the router orders
them in the sequence of A, D, and B.

C. Aggregate Validation

As shown in Algorithm 1, aggregate validation enables
three types of entities (i.e., source, router, and destination)
to run four types of functions (i.e., Initialization,
Construction, Verification, and Update). For ini-
tialization, the source exchanges a respective shared symmetric
key with every router and the destination. These keys are used
for proof construction, verification, and update. Once a specific
group of packets is ready, the source initializes their GroupTag,

Algorithm 1: Symphony – Aggregate Validation
1 Function Initialization:
2 for i ∈ [1, n] do
3 R0 and Ri exchange shared symmetric key

Ki;

4 Function Construction:
5 for packet Pi ∈ a group of m packets do
6 SessionID ← identifier of the current session;
7 Generate GroupTag, OrderTag, and GroupSize;
8 Timestamp ← creation time of packet P1;
9 Embed Timestamp in the header of only P1;

10 GP ← P1.payload||...||Pm.payload;
11 DataHash ← H(GP);
12 Divide DataHash into all packet headers;
13 //compute SymphonyProof;
14 h← SessionID||DataHash||Timestamp;
15 σ0 ← MACKn(h);
16 σ ← σ0;
17 Divide σ into all packet headers;
18 for i ∈ [1, n] do
19 Vi ← MACKi

(h||σi−1);
20 Divide Vi into all the packets;
21 σi ← MACKi

(σi−1);

22 Function Verification:
23 if a group is complete then
24 h← SessionID||DataHash||Timestamp;
25 V ′

i ← MACKi (h||σ);
26 if Vi == V ′

i then
27 Accept the group of packets;
28 else
29 Drop the group of packets;

30 else
31 Drop the group of packets;

32 Function Update:
33 //If verification succeeds, router Ri updates σ;
34 σ ← MACKi

(σ);

OrderTag, and GroupSize for packet aggregation. The source
then constructs group proofs over the group of packets and
sends these packets to the next hop. Upon receiving the
group of packets, a router verifies their proofs. If verification
succeeds, the router updates the proofs by integrating its own
credentials and forwards the group of packets to the next hop.
The preceding proof verification and update iterate until the
group of packets arrive at the destination. Since the destination
has no next hop to forward packets to, it only verifies proofs
rather than updates them.

Prior to detailing the design of each function, we further
generalize the design guidelines (especially about proofs) for
ease of understanding. One can imagine proofs as a series of
pre-computed integrity measures. First, they resemble integrity
measures in that a node (i.e., an intermediate router or the
destination) should know the exact expected proofs after all
its upstream nodes (i.e., the source or intermediate routers)
follow the designated forwarding order and correctly update
the proofs in the packet header. Second, proofs can be pre-

7

computed and then pre-arranged in the packet header because
the source is usually deemed trusted in practice [9], [10], [33],
[36], [48]. Specifically, the trusted source needs to share with
each co-path node a secret key. A co-path node will use its
shared key to integrate its credentials into the proofs. Since
the shared key is also known to the source, it is possible for
the source to pre-compute the expected proof after a packet
has traversed certain hops. Proofs may vary hop by hop. The
source then embeds these pre-computed proofs in the header
of an outgoing packet. Upon a subsequent node receives the
packet, it essentially runs an integrity check by 1) computing
the expected proof with its shared key and packet metadata
as well as 2) comparing the computed proof with the proof
that is carried in the packet header. Our Symphony further
contributes to the preceding guidelines with a group-wise
validation framework (Section III-A). It computes proofs with
a group of packets as the input and then distributes proofs
across the group.

Initialization. As aforementioned, we follow most existing
solutions to assume a trusted source in practice [9], [10], [33],
[36], [48]. Source R0 prepares for proof construction by 1)
exchanging shared symmetric key Ki with each on-path router
Ri and 2) exchanging shared symmetric key Kn with the
destination Rn (lines 1-3 in Algorithm 1). A common method
used for the key exchange process is Diffie-Hellman [18], [23].
This enables the trusted source to pre-compute proofs used for
verification for the routers and destination, greatly improving
efficiency [33].

Proof construction. Through this function (lines 4-21 in
Algorithm 1), the source instantiates all fields of the Symphony
Header belonging to two categories. One consists of the
leading fields that can be easily determined while aggregating
packets and the other includes on SymphonyProof that requires
certain pre-computation using the former category.

We start with instantiating fields in the first category (lines
5-12 in Algorithm 1). SessionID records the identifier of the
current communication session.The subsequent GroupTag—
together with SessionID—uniquely identifies a group of pack-
ets in the session. It is assigned with the index of groups.
OrderTag and GroupSize are assigned with the index of a
packet in the group and the number of packets in the group,
respectively. Timestamp is set as the creation time of the first
packet in the group. Of all the mentioned fields, SessionID,
GroupTag, and GroupSize are identical in all the packets
while OrderTag is different (lines 5-7). In contrast, Timestamp
resides in only the first packet of the group (lines 8-9). Then
we form group payload GP by concatenating payloads of
all packets in the group (line 10), hash GP and assign it
to DataHash (line 11), and evenly distribute DataHash across
packets to amortize storage overhead (line 12).

SymphonyProof in the second category further consists of
two types of fields—an update field σ that helps computing
proofs and a series of verification fields Vi that are used to
verify the computed proofs (lines 13-21 in Algorithm 1). Vi

is pre-computed by the source and stays fixed throughout the
entire forwarding process while σ is updated hop by hop:

σ ← MACKn
(h), (2)

where Kn is the shared symmetric key between the source
and destination and h = SessionID||Timestamp||DataHash.

The computation of σ involves all of SessionID, Timestamp,
and DataHash such that proof verification can simultaneously
check data integrity and freshness. Similar to DataHash, σ
is also divided and distributed across all packets to amortize
space overhead (line 17).

We iteratively compute a series of Vi using σ as follows
(lines 18-21 in Algorithm 1). Since Ri receives σi−1 computed
by Ri−1, we can pre-compute verification field Vi for Ri with
σi−1 as an input [33]. Ri will accordingly verify Vi carried
in a received packet using the σi−1 carried therein (lines 22-
31 in Algorithm 1). Since Ri−1 is the only router that is
supposed to correctly compute σi−1, a successful verification
of Vi using the carried σi−1 demonstrates that the packet has
actually traversed Ri−1. Similarly, Ri embeds its credential
by updating σi−1 to σi (lines 32-34 in Algorithm 1), which is
then used for Ri+1 to verify Vi+1.

σi = MACKi(σi−1). (3)
Vi = MACKi

(h||σi−1). (4)

We then divide and distribute Vi among the group.

Proof verification. Once after Ri receives a complete ordering
group of packets correlated by their SessionID, GroupTag,
OrderTag, and GroupSize, it verifies the validity of Vi (lines
22-31 in Algorithm 1). Ri first computes V ′

i in the same way
as the Vi should have followed:

V ′
i = MACKi

(h||σ). (5)

If V ′
i matches Vi carried in the group of packets, verification

succeeds. Otherwise, verification fails. Another case that fails
verification is when Ri finds an incomplete group due to packet
losses or a long delay. In Algorithm 1, we handle verification
failures with an all-or-nothing principle for ease of design.
Specifically, if a group of packets fails verification, the entire
group is discarded.

Proof update. If Ri successfully verifies Vi and is not the
destination, it needs to update σ for integrating its own
credential (lines 32-34 in Algorithm 1).

σ = MACKi
(σ). (6)

Then Ri divides the updated σ into all packet headers and
forwards the verified group of packets to the next hop Ri+1.
The updated σ therein is used by Ri+1 for Verification.

V. SECURITY

In this section, we prove that Symphony satisfies both
security requirements—proof unforgeability and hop-wise
validation—defined in Section II-C. We also discuss its re-
sistance to distributed denial-of-service (DDoS) attacks.

A. Proof Unforgeability

Proof unforgeability is the major security goal of any path
validation solution. It requires that the attacker can hardly
forge a valid proof. We use Cipher Block Chaining MAC
(CBC MAC) [1] as the validation primitive. Therefore, proof
unforgeability depends on the security of CBC MAC. A secure
MAC must defend the adaptive chosen-message attack to resist
potential forgery [4], [12], [21]. As for CBC MAC, its security
is bounded by the insecurity of a CBCm-F , where F is a

8

pseudo-random function (PRF) or pseudo-random permutation
(PRP), as shown in Theorem 1 [3].

Theorem 1. [3] Let l,m ≥ 1 and q, t ≥ 1 be integers such
that qm ≤ 2(l+1)/2. Let F: Keys(F)×{0, 1}l → {0, 1}l be a
family of functions. Then

Advmac
CBCm-F (q, t) ≤ Advprf

F (q′, t′) +
3q2m2 + 2

2l+1

≤ Advprp
F (q′, t′) +

2q2m2 + 1

2l
,

where q’=mq and t’=t+O(mql).

Theorem 1 shows that the probability of breaking CBC
MAC is no more than that of directly breaking the func-
tion F used in CBC MAC with comparable resources.
Advmac

CBCm-F (q, t) denotes that among all the attackers whose
restricted resources are q messages and t execution time,
the maximum advantage the attacker has when distinguish-
ing a random example of CBCm-F from a PRF. Similarly,
Advprf

F (q′, t′) and Advprp
F (q′, t′) denote the maximum advan-

tage the attacker has when distinguishing F from a PRF or
a PRP with restricted resources, respectively. In this way, we
can cryptanalyze the lower-level primitive F to estimate the
security level of the original CBC MAC. Symphony uses AES-
128 as the underlying block cipher of CBC MAC. Suppose that
there exists a practical method that has a probability of forging
messages by executing an adaptive chosen-message attack after
accessing a large number of MACs of messages, say 220 1,000-
byte packets. Then according to Theorem 1, there should be a
practical method that has a similar probability of differentiating
AES values at 226 points among many random distinct points
with the same restricted resources, associating with a very low
probability of 2−26.

Furthermore, Symphony guarantees proof unforgeability
against brute-force attacks in the following three ways.

First, the probability of forging a Symphony proof via
brute-force attacks is negligible. Our Symphony proof crypto-
graphically computes auxiliary fields (i.e., SessionID, Times-
tamp, and DataHash) into two validation fields (i.e., σ and
Vi). According to Symphony configuration, the probability of
forging σ and Vi’s for a group of packets along an n-hop path
is 2−128(n+1).

Second, the attacker can hardly crack the shared keys
between the source and other nodes. If the attacker could crack
all such shared keys, it need not forge valid proofs via brute-
force attacks. Instead, it can freely forge any proof as if it were
the trusted source. Symphony uses a 128-bit security level that
is sufficiently secure for symmetric encryption.

Third, the attacker has to forge proofs over an entire
group instead of a single packet as in existing solutions. This
further hinders the attacker from forging proofs. Specifically,
Symphony divides proofs into packets in a group. A correct
proof cannot be computed using only a single packet as
the input. Group-wise forging complicates the attacker by an
O(m) complexity, where m denotes the group size.

B. Hop-wise Validation

We further prove that Symphony is robust against attacks
such as packet alteration (Theorem 2), injection (Theorem 3),
and deviation (Theorem 4).

Theorem 2. Once any packet of a group is modified, the
alteration can be detected and the group of packets cannot
pass validation.

Proof: Suppose the group G sent by source R0 is altered
to G′ prior to its arrival at Ri.

∀(G,R0, s), (G
′, Ri, r)s.t.: G,G′ ̸= ⊥ ∧ 1 ≤ i ≤ n ∧Ri ∈ Φ

If G.GP ̸= G′.GP

⇒ G.DataHash ̸= G′.DataHash

⇒ Ψ(G′, Ri) = 0

Given that the attacker can hardly forge proof fields in
packet headers, it may directly modify packet payloads. Any
modification of packet payloads necessitates recomputing the
corresponding DataHash to pass integrity check. Group G′ thus
carries a new DataHash different from the original one carried
by G. However, the source signs DataHash into proofs using its
shared key with the destination (lines 14-15 in Algorithm 1).
Thus, the validation in Ri would fail.

Theorem 3. Once some packets are injected, routers can
detect the attack and prevent injected packets from passing
validation.

Proof: Suppose that the group Ga arriving at Ri includes
some injected packet(s).

∀(Ga, Ri, r) s.t.: Ga ̸= ⊥ ∧Ri ∈ Φ

If Ga is not entirely generated by source
⇒ Ga.proof is not signed by source
⇒ Ga.V1, ..., Ga.Vi are not valid
⇒ Ψ(Ga, Ri) = 0

Let Gb denote any group sent by source R0.

∀(Ga, Ri, r), (Gb, Rj , s) s.t.: Ga, Gb ̸= ⊥ ∧Ri, Rj ∈ Φ

If Gb is replayed by Ga

⇒ Ga.T imestamp = Gb.T imestamp

⇒ Ga is expired
⇒ Ψ(Ga, Ri) = 0

The first set of equations shows how we prevent injected
packets from passing validation. If the group is generated by
intermediate routers, the proof fields carried in the header are
not signed by the source using corresponding symmetric keys
and are not valid. Since attackers can hardly forge valid proofs
for the injected packets to pass verification, benign routers can
detect injected packets and drop them.

Another potential alternative is a replay attack, in which
the attacker directly replays some valid packet(s) it captured.
If a replayed packet is injected to a certain group, it is regarded
as a forged packet to the group and cannot pass validation as
the second set of equations shows. If the attacker captures and
relays an entire group of valid packets, they can be detected
and filtered using Timestamp [33]. Once a router detects an
already existed Timestamp, it considers the group as expired
and drops the group. Since Timestamp is also signed into
unforgeable proofs (lines 14-15 in Algorithm 1), the attacker
cannot evade detection by forging Timestamp in the replayed
packets either.

Theorem 4. Once the packets are deviated, the mis-forwarding
can be detected and the group cannot pass validation.

9

Proof: In the first case, suppose the group Ga sent by Ri

is deviated to an off-path router Rj .

∀(Ga, Ri, s), (Gb, Rj , r) s.t.: Ga, Gb ̸= ⊥ ∧ i ̸= j ∧Ri ∈ Φ

If Rj ̸∈ Φ

⇒ Gb.SessionID cannot match with Φ

⇒ Ψ(Gb, Rj) = 0

In the second case, suppose that the packets are forwarded
in an incorrect order like {Ri, Rk, Rj} (while the correct order
is {Ri, Rj , Rk}).

∀(Ga, Ri, s), (Gb, Rk, r), (Gc, Rk, s), (Gd, Rj , r)

s.t.: Ga, Gb, Gc ̸= ⊥ ∧Ri, Rk, Rj ∈ Φ

If i+ 2 = k + 1 = j

⇒ Vk ̸= MACKk
(h||σi)

⇒ Ψ(Gb, Rk) = 0

The misbehavior of deviation is against Requirement 1.
Symphony can detect it and stop the group from passing
verification. Specifically, the attacker launches such attacks
through a compromised router. It may deviate packets away
from the specified forwarding path in two fashions. First, it
forwards packets to a different path from the one bounded to
SessionID. Second, it forwards packets to some router on the
specified path by sidestepping the specified next-hop router.
The above two sets of equations correspond to these two cases.
In the first case, the path that the packet is mis-forwarded to
should maintain a different SessionID than that carried in the
packet, because Symphony enforces a SessionID-path binding.
The router receiving the mis-forwarded packet can easily detect
the mismatching of SessionIDs and discard the group including
mis-forwarded packets. In the second case, the sidestepped
router will not integrate its credential into the path proofs (line
34 in Algorithm 1). This results in the router not being able to
calculate a correct and valid proof. This fails proof verification
on the router that receives the mis-forwarded packet (lines 25
in Algorithm 1).

C. DDoS Resistance

Finally, we discuss Symphony’s resistance to DDoS at-
tacks. Such attacks targeting our Symphony in particular might
exploit two vectors—packet alteration and packet loss.

Packet alteration. As with existing path validation solutions,
tampering with any proof-computation–related field (e.g.,
Timestamp) prohibits a packet from being validated. Packets
failing validation will be discarded and retransmitted. This
resembles packet alteration attacks (e.g., integrity violation) in
traditional networks without path validation. A DDoS attack
occurs if proof-field alteration affects a large number of pack-
ets. However, it is not among the initial design goals of path
validation to defend against such DDoS attacks (Section II-C).
Proofs computed for path validation aim more at unforgeability
such that a packet cannot claim its forwarding along a path
it has not actually taken. To augment path validation with
DDoS resistance, a possible choice is first to locate routers
on which DDoS attacks originate and then to exclude them
from path choices. We hereby suggest a feasible method to
locate suspicious routers. Specifically, each router tracks the
number of invalid packets from every previous-hop router.

Routers sending an abnormally high number of invalid packets
can be considered suspicious for launching DDoS attacks.

Packet loss. In comparison with existing packet-wise path
validation, our Symphony is more sensitive to packet losses.
A lost packet induces retransmission of only one packet in
packet-wise path validation. In aggregate validation featured
by Symphony, however, a lost packet fails the verification of
an entire group of packets and necessitates retransmitting all
of them. This seems to render Symphony more vulnerable to
DDoS attacks that exploit packet losses. To investigate this
concern, we evaluate the impact of packet losses on throughput
in Section VI-J. Both solutions do experience throughput
reduction upon packet losses. It turns out that Symphony can
still yield higher throughput than state-of-the-art EPIC does
when the packet loss rate is as practically high as 10%. Against
potentially higher packet loss rates under disruptive network
conditions, we explore a packet reaggregation technique in
Section VI-K. Once a group experiences lost or unverified
packets, packet reaggregation enables an intermediate router
to function as a new source, re-initiate aggregation validation
over the remaining verified packets of the group, and only
retransmit lost or unverified packets as in traditional packet-
wise validation solutions. Furthermore, we do not send lost or
unverified packets individually. We mix them into subsequent
packet groups to regain efficiency from aggregate validation.

VI. EVALUATION

We implement Symphony using DPDK [28] and practice
it on a local server as well as on a real deployed multihop
testbed for performance evaluation. First, the local experiments
are carried out on an Intel Xeon E5-2630 v3 (2.40 GHz)
server [29]. It has 8 cores, 16 GB memory, and two hard-
ware network-interface cards (NICs). The NICs are associ-
ated with Intel Corporation I350 Gigabit Network Connection
and Intel Corporation Ethernet Controller X710. To measure
the throughput, one NIC serves as a packet generator and
bandwidth monitor, and the other performs computation of
path validation. Second, the multihop testbed adopts rented
c6e servers (with 3.2 GHz Intel Xeon Platinum 8269CY
processors) from cloud computing services by Alibaba Cloud
[17]. Both settings support a 10 Gbps link. We use the Intel
AES-NI hardware instruction [41] to further accelerate the
cryptographic computation. In comparison with state-of-the-
art EPIC [36], Symphony speeds up packet processing by
3.78×∼18.40× and increases communication throughput by
1.13×∼6.11×.

A. Proof Size

We start with evaluating the communication overhead by
Symphony proofs. The metric is the proof size. We expect the
proofs to be as short as possible such that much bandwidth is
left for transmitting payloads. The length of the entire proof
is dominated by the path length. Given a fixed path length,
a larger group imposes a shorter proof on each packet on
average. Shorter proofs, however, do not necessarily yield
better performance as a larger group may enforce a longer
delay. In practice, we consider it possible to use an adaptive
strategy to adjust group size in response to real-time network
conditions. We adhere to common configurations in related
work in what follows.

10

Path Length
161412108642

Group Size

2
4

8
16

Pr
oo

f S
iz

e
(b

yt
es

)

0

50

100

150

200

Fig. 3. Proof size comparison of Symphony under a 128-bit security level
with varying path lengths and group sizes.

Symphony proof size. As shown in Table IV, the size of a
Symphony header under a fixed security level depends on two
parameters—path length n and group size m. The payload size
does not affect proof size because we first compute the hash
result (i.e., DataHash) of the payload and then use a constant-
size DataHash for proof computation. Following the structure
of a Symphony header in Figure 2, the size of the first packet
in a group can be defined as:

23 +
16(n+ 3)

m
.

The only difference between the first packet and the other m−1
packets in the same group is that the latter ones do not contain
Timestamp in their headers. We estimate the average proof size
per packet as follows.

23 + 16(n+3)
m + (19 + 16(n+3)

m)(m− 1)

m
=

19m+ 16n+ 52

m
.

TABLE IV. SIZE AND QUANTITY OF EACH FIELD IN A SYMPHONY
HEADER (ALGORITHM 1) WITH AN m-PACKET GROUP, AN n-HOP PATH,

AND A 128-BIT SECURITY LEVEL. (NOTE THAT ‘*’ REPRESENTS THAT THE
FIELD IS ENTIRELY STORED IN THE FIRST PACKET OF A GROUP.)

Field Size (byte) Quantity

SessionID 16 1
GroupTag 1 1
OrderTag 1 1
GroupSize 1 1

Timestamp* 4 1
DataHash 32/m 1

σ 16/m 1
Vi 16/m n

Figure 3 illustrates the proof size of Symphony under
a 128-bit security level. Since each part of Vi takes 16/m
bytes in a packet header, we configure it as an integer for
ease of storage. Thus, we choose group size m = 2, 4, 8, 16
to measure the proof size. We have two observations over
proof size variation. First, given a fixed path length, the proof
size decreases with the group size because a larger group
offers more packets to amortize the proof fields (e.g., Vi).
For example, given an 8-hop path, the proof size of each
packet decreases from 64 bytes to 41 bytes when the group
size increases from 4 to 8. Second, given a fixed group size,
the proof size increases with the path length because a longer
path enforces more verification fields Vi in each packet header.
Using the smallest group size of 2 for example, Symphony
yields a proof size of 109 and 173 bytes when the path length
is 8 and 16, respectively.

2 4 6 8 10 12 14 16
Path Length

0.7

0.8

0.9

1.0

G
oo

dp
ut

 R
at

io

Baseline
ICING
OPT
EPIC
Symphony (m = 2)
Symphony (m = 4)
Symphony (m = 8)
Symphony (m = 16)

Fig. 4. Comparison of goodput ratio of Symphony with existing path
validation solutions with 1,000-byte payloads and varying path lengths and
group sizes.

Comparison with existing solutions. Table V compares the
proof size of Symphony with that of existing path validation
solutions. Existing solutions enforce anO(n) space complexity
given an n-hop path. Since Symphony amortizes proofs across
packets in a group, they thus yield a lower space complexity of
O(n/m), where m denotes group size. Symphony outperforms
ICING and OPT in terms of shorter proof sizes. However,
Symphony may yield longer proofs than state-of-the-art EPIC
does under certain settings. EPIC achieves such short proofs by
embedding partial proofs in each packet. It requires additional
security schemes to mitigate the so caused vulnerabilities [36].

B. Goodput Ratio

We further quantify the impact of proof size on perfor-
mance via goodput ratio. The goodput ratio represents the
ratio of payload size to total packet size (including both packet
header and payload) [36]. For baseline solutions without path
validation incorporated, a packet header simply consists of
an IP header and a TCP header, which are 20 bytes and
32 bytes, respectively. For path validation solutions, they
introduce additional validation header fields with various sizes.

Figure 4 compares the goodput ratio of Symphony with
that of existing solutions. Without loss of generality, we adopt
an average payload of 1,000 bytes. The baseline solution
delivers a constant goodput ratio of 95.06% regardless of
path length. This is straightforward because it introduces no
additional header fields for path validation and thus has the
highest goodput ratio. For all the path validation solutions, the
goodput ratio decreases with path length. Below the highest
baseline is Symphony with GroupSize of 16. When the path
length is 16, Symphony still has a goodput ratio of 91.72%.
EPIC follows Symphony with GroupSize of 16. Again, EPIC
yields such a high goodput ratio because it only embeds partial
proofs in packet headers. Among the path validation solutions
that embed complete proofs in packet headers, our Symphony
outperforms OPT and ICING.

Note that proof size alone cannot comprehensively quantify
validation performance. It also matters about how fast packets
can be processed. For example, if a validation induces rel-
atively long proofs yet offers fast packet processing, it may
still quickly validate a volume of packets. We thus proceed
with evaluating packet processing overhead at the source
(Section VI-C) and router (Section VI-F).

C. Construction Time at Source

Figure 5 compares the proof construction time per packet
of Symphony and state-of-the-art EPIC [36]. We report the

11

TABLE V. PROOF SIZE COMPARISON OF SYMPHONY WITH EXISTING SOLUTIONS UNDER A 128-BIT SECURITY LEVEL WITH VARYING PATH LENGTH n
AND GROUP SIZE m.

Solution Proof Size Group Size m, Path Length n

m = 4, n = 8 m = 4, n = 12 m = 8, n = 8 m = 8, n = 12 m = 16, n = 8 m = 16, n = 12

ICING [39] 42n + 13 349 517 349 517 349 517
OPT [33] 16n + 52 180 244 180 244 180 244
EPIC [36] 5n + 16 56 76 56 76 56 76
Symphony (19m + 16n + 52)/m 64 80 41 49 30 34

2 4 6 8 10 12 14 16
Path Length

0

5

10

15

20

25

C
on

st
ru

ct
io

n
Ti

m
e

(
s)

Symphony (m = 2)
Symphony (m = 4)

Symphony (m = 8)
Symphony (m = 16)

EPIC

Fig. 5. Construction time per packet at the source with 1,000-byte payloads
under varying path lengths and group sizes.

average construction time of 10,000 packets each with 1,000-
byte payloads. The construction time of all solutions increases
with path length as the source needs to compute an individual
verification field for each hop. The construction time of Sym-
phony with a 4-packet group increases from 0.85 µs to 3.53 µs
when the path length increases from 2 to 12. For Symphony,
the construction time decreases with group size because of the
amortization effect across packets in a group. Consider, for
example, when the path length is 16. Symphony takes 9.11 µs
to construct proofs for a 2-packet group while only 2.39 µs
for a 8-packet group.

Symphony outperforms EPIC. The average reduction of
construction time ranges from 39.51% (Symphony with group
size of 2) to 93.78% (Symphony with group size of 16).

D. Reassembly Time on Router

Prior to evaluating aggregate validation time in Sec-
tion VI-F, we first evaluate the time for aggregating a group
of packets in Section VI-D and for reordering them in Sec-
tion VI-E.

TABLE VI. GROUP REASSEMBLY TIME WITH VARYING GROUP SIZES.

Reassembly Time Group Size m

m = 2 m = 4 m = 8 m = 16

Least Upper Bound (µs) 0.06 0.13 0.17 0.29

We use a simple yet effective time-bounded group reassem-
bly method. The key idea is to first discover the least upper
bound of time that a router takes to receive a complete group of
packets and then use this time bound as a threshold. When the
waiting time exceeds the threshold and the router cannot find
all expected groups belonging to a certain group, the router
ascertains potential packet losses and considers the group as
incomplete. The time bound can be collaboratively discovered
by an end-host and the first-hop router. The end-host keeps
sending continues groups of test packets to the first-hop router.

Then the router simply tracks the time for receiving each
group. Given relatively stable network conditions, reassembly
time per group will quickly converge and reveal the feasible
time bound. We report group reassmebly time with varying
group sizes in Table VI. It is much faster to reassemble a
group than to validate it (Section VI-F).

E. Reordering Time on Router

We investigate the time for reordering a group of received
packets in two cases—hardware router and software router.

Hardware router. We have suggested an SRAM-based hard-
ware router logic to implement packet reordering in Sec-
tion III-B. The order of packets in a group is correlated to cell
locations on the SRAM. Once a router finishes fetching a group
of packets from the queue and placing them in corresponding
cells, it already obtains a group of ordered packets. No further
reordering effort is needed. In this case, reordering timer per
packet approximates to the SRAM access time (e.g., 0.003 µs
[44]).

TABLE VII. PACKET REORDERING TIME WITH VARYING GROUP SIZES.

Reordering Time Group Size m

m = 2 m = 4 m = 8 m = 16

Average Time (µs) 0.01 0.01 0.02 0.03
Upper Bound (µs) 0.01 0.03 0.04 0.06

Software router. On the software router—DPDK—we use,
sorting is necessary for reordering a group of packets. We
choose bubble sort [2] because it offers fast and efficient
sorting for relatively small groups. In contrast, other alter-
natives (e.g., quicksort) may require additional parameters
(e.g., pivot) that consume packet space and router resource.
Table VII shows the average reordering time and the upper
bound per packet. When the group size increases from 2
to 16, the average packet reordering time increases from
0.01 µs∼0.03 µs. The corresponding ratio of reordering time to
verification time (Section VI-F) ranges from 1.57% to 20.68%.

F. Processing Time on Router

Figure 6 reports the average processing time per packet on
each router of Symphony in comparison with that of EPIC.
It consists of the time for verifying proofs and for updating
proofs. We report the average processing time over 10,000
packets with varying path length and group size. The path
length does not quite fluctuate the processing time. A router
only needs to perform two MAC operations to verify and
update proofs. The related fields σ and h do not depend on the
path length. For example, the processing time of Symphony
with a 16-packet group keeps around 0.13 µs∼0.15 µs as
the path length increases. The tiny increase is brought by

12

2 4 6 8 10 12 14 16
Path Length

0

1

2

3

Pr
oc

es
si

ng
 T

im
e

(
s)

Symphony (m = 2)
Symphony (m = 4)

Symphony (m = 8)
Symphony (m = 16)

EPIC

Fig. 6. Processing time per packet on the router with 1,000-byte payloads
at the source with varying path length and group size.

splitting and merging related proof fields. In contrast to the
path length, the group size matters for the processing time of
Symphony. Since our solutions leverage group-wise validation,
a larger group offers more packets to amortize the processing
time. For example, when the path length is 12, the processing
time of Symphony is 0.69 µs given a group of 2 packets.
When GroupSize reaches 8, the processing time shrinks to
only 0.22 µs, being 68.12% faster. The second conclusion
is that despite processing time and group size are positively
correlated, they do not have a strict multiplicative relationship.
Considering a 16-hop path, the processing time decreases from
0.73 µs to 0.15 µs as the group size increases from 2 to 16.
The speed only increases by 4.87 times, which is significantly
lower than the actual increase in group size. This is because
the merging and splitting operations become more complicated
when the group size is larger while the original verification
operation keeps the same.

Symphony yields a much shorter processing time than
EPIC does. As shown in Figure 6, even the bottom case
of Symphony (0.73 µs) with GroupSize = 2 is about 3.78×
faster than EPIC (2.76 µs) when the path length is 16 and the
payload size is 1,000 bytes. In the same settings, Symphony
with GroupSize = 16 further reduces the processing time to
0.15 µs, being 18.40× faster than EPIC.

G. Throughput and Goodput

Throughput. Figure 7 reports the throughput measurements
of Symphony and EPIC. The source limits throughput scale
because it takes more time to process packets than other routers
on the same path (Figure 5 and Figure 6). To concentrate
on efficiency by validation primitives per se, we run the
experiments with a single CPU without leveraging multi-
CPU parallelism (to be evaluated in Section VI-I). Symphony
achieves higher throughput than EPIC does.

We now discuss how throughput varies with payload sizes,
path lengths, and group sizes. First, throughput increases with
payload sizes. Since the payload size does not affect the
processing time much, a larger payload size yields more data
to transmit in a given time. For example, when the payload
size increases from 500 bytes to 1,000 bytes, throughput of
Symphony with group size of 4 increases from 2.60 Gbps to
4.33 Gbps on a 2-hop path. Second, throughput decreases with
path length. As the construction time increases with the path
length, a fixed packet size results in the decrease of throughput.
When the path length increases from 2 to 12, the throughput

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Payload = 500

Symphony (m = 2)
Symphony (m = 4)

Symphony (m = 8)
Symphony (m = 16)

EPIC

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

(b) Payload = 1000
Fig. 7. Comparison of throughput with varying payload sizes, path lengths,
and group sizes.

of Symphony decreases by 69.07% with an 8-packet group.
Third, when GroupSize increases, the average processing time
of each packet decreases while the total packet size increases.
Thus, throughput increases with GroupSize. When the path
length is 2 and the payload size is 1,000 bytes, the throughput
of Symphony is 9.19 Gbps with group size of 16, increasing
by 112.26% in comparison with when the group size is 4.
Fourth, the increase in throughput is less than the increase in
GroupSize. When a group becomes larger, merging and split-
ting proofs become more complicated, resulting in a slower
increase of throughput. For example, when the group size
increases by 8× from 2 to 16, the throughput only increases
by 3.15× with a 16-hop path and a 1,000-byte payload. This
indicates an important conclusion that the increase in group
size has a threshold, especially considering situatiosn with
packet loss and retransmission (Section VI-J). In summary,
Symphony yields a higher throughput ranging from 1.13× that
of EPIC given payload size of 500, path length of 2, and group
size of 2 to 6.11× that of EPIC given payload size of 1,000,
path length of 16, and group size of 16.

Goodput. Goodput ultimately reflects how fast data transmis-
sion can be. The goodput ratio is the ratio of payload size to
total packet size (Section VI-A). It can also be equivalently
defined as the ratio of goodput to throughput [36]. Therefore,
we can estimate the goodput as:

goodput = throughput× goodputratio. (7)

We measure the goodput based on the throughput in Figure 7
and compare our solutions with EPIC in Figure 8. Symphony
achieves a higher goodput than EPIC does, increasing by
1.09× (with payload size of 500, path length of 2, and group
size of 2) to 6.56× (with payload size of 1,000, path length
of 16, and group size of 16).

H. Sensitivity to Mixed Packet Size

Figure 9 reports performance measurements with mixed
packets of different sizes in a group. Given that processing
time depends more on packet header fields rather than pay-
loads, composition of intra-group packets does not fluctuate
processing time. Therefore, varying packet sizes affects only
the scale of throughput and goodput. It does not necessarily
affect the performance comparison effect of various solutions
given the same settings. We provide in Figure 9 with an
instance of mixed-size packets emulating video traffic—1/3 of
the group are 480-byte packets for audio transmission and the

13

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

G
oo

dp
ut

 (G
bp

s)

(a) Payload = 500

Symphony (m = 2)
Symphony (m = 4)

Symphony (m = 8)
Symphony (m = 16)

EPIC

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

(b) Payload = 1000
Fig. 8. Comparison of goodput with varying payload sizes, path lengths, and
group sizes.

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

G
oo

dp
ut

 (G
bp

s)

(b) Goodput

Symphony (m = 2)
Symphony (m = 4)
Symphony (m = 8)

Symphony (m = 16)
EPIC

2 4 6 8 10 12 14 16
Path Length

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Throughput
Fig. 9. Comparison of throughput and goodput with varying path length and
a 4-packet group of mixed-size packets emulating video traffic.

remaining 2/3 of the group are 1,400-byte packets for video
transmission [35]. The performance trend of Symphony with
different group sizes is basically the same as that shown in
Figure 7 and Figure 8. Various other mix-size packet instances
exhibit similar trends.

I. Multi-core Acceleration

We evaluate the performance of multi-core acceleration
for Symphony. Due to the limit of 16 GB server memory,
the maximum cores used are limited to 4 as a larger setting
would lead to memory outage. Figure 10 reports Symphony
throughput with varying core count, payload size, and group
size on a 4-hop path. The throughput increases with payload
size and group size as we discussed in Section VI-G. We
observe that throughput increases with allocated cores. With
a 1,000-byte payloads and an 8-packet group, Symphony
achieves a 5.68 Gbps throughput using only one core. It is
accelerated to 8.06 Gbps when given up to 2 cores. The
throughput further reaches the upper bound of 10 Gbps link
while using 3 and 4 cores.

J. Packet Loss

We evaluate the impact of packet loss rates on the through-
put of Symphony. Considering that throughput quantifies the
amount of data successfully transmitted per unit time, higher
packet loss rates lead to lower throughput. Symphony needs
to retransmit an entire group of packets as long as at least one
packet in the group is lost. This leads to a potential source
of network congestion. We use the TCP BBR model [13],

200 400 600 800 1000
Payload Size (Bytes)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(a) GroupSize = 2

1 core 2 cores 3 cores 4 cores

200 400 600 800 1000
Payload Size (Bytes)

0

2

4

6

8

10

(b) GroupSize = 4

200 400 600 800 1000
Payload Size (Bytes)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

(c) GroupSize = 8

200 400 600 800 1000
Payload Size (Bytes)

0

2

4

6

8

10

(d) GroupSize = 16
Fig. 10. Symphony throughput with varying core counts, payload sizes, and
group sizes on a 4-hop path.

[14], [46]—a new congestion control algorithm—to estimate
the impact. Assume that the packet loss rate of each packet is
p. The entire group with m packets in Symphony has a packet
loss rate of 1− (1− p)m, while the successful delivery rate is
1− (1− (1− p)m) = (1− p)m. The theoretical throughput of
Symphony can be estimated as follows.

Throughput = T × (1− p)m, (8)

where T denotes the original throughput without packet losses.
Table VIII shows the theoretical reduction in throughput for
both EPIC and Symphony under various packet loss rates
normalized over throughput without packet losses. EPIC re-
transmits only lost packets. In contrast, Symphony is more
sensitive to packet losses due to retransmission of an entire
group even upon a single packet loss. Larger group sizes thus
lead to greater reduction in throughput.

TABLE VIII. THROUGHPUT REDUCTION WITH 1,000-BYTE
PAYLOADS, PATH LENGTH OF 8, AND VARYING PACKET LOSS RATES.

Solution Packet Loss Rate

0.1% 0.5% 1% 3% 5% 10%

EPIC 0.10% 0.50% 1.00% 3.00% 5.00% 10.00%
Symphony (m = 2) 0.20% 1.00% 1.99% 5.91% 9.75% 19.00%
Symphony (m = 8) 0.80% 3.93% 7.73% 21.63% 33.66% 56.95%

Figure 11 further reports the evaluation results of the
throughput and related reduction for both solutions. Following
the preceding analysis, packet losses affect Symphony with
larger groups (e.g., 8-packet groups) more than Symphony with
smaller groups (e.g., 2-packet groups) and EPIC without using
packet groups. For example, given a packet loss rate of 1%—a
threshold of user experience about Voice over Internet Protocol
(VoIP) [16]—the throughput reduction of EPIC, Symphony
with 2-packet groups, and Symphony with 8-packet groups
is 0.01 Gbps, 0.07 Gbps, and 0.38 Gbps, respectively. When
the packet loss rate increases to 5%, throughput of EPIC,
Symphony with 2-packet groups, and Symphony with 8-packet
groups further decreases by 5.01%, 11.59%, and 33.75%, re-
spectively, in line with theoretical results in Table VIII. Albeit
more sensitive to packet losses, Symphony still outperforms

14

0.1 0.5 1 3 5 10
Packet Loss Rate (%)

0

1

2

3

4
Th

ro
ug

hp
ut

 (G
bp

s)
EPIC Symphony (m = 2) Symphony (m = 8) Drop

Fig. 11. Comparison of throughput with varying packet loss rates on an
8-hop path with 1,000-byte payloads.

EPIC with a higher throughput. This again demonstrates the
effect of our proposed aggregate validation.

K. Packet Reaggregation

We further explore a packet reaggregation technique to deal
with even higher packet loss rates under disruptive network
conditions. It enables an intermediate router to function as
a new source and re-initiate aggregation validation over the
remaining verified packets of a group. This way, only lost
packets require retransmission.

Verification of incomplete groups. The first challenge for
packet reaggregation is to identify valid packets in an incom-
plete group. Packet reaggregation is invoked when a group of
packets fails verification. Two such cases are when 1) the group
contains fewer packets than GroupSize claims and 2) the group
satisfies GroupSize while some packets therein are invalid.
The generic root cause for both cases is that the group is
incomplete in terms of lacking valid packets. When we regroup
the remaining packets, we need to make sure that they conform
to path validation so far. However, the verification fields they
carry should have been computed using an entire group as the
input. We need to modify Construction in Algorithm 1 to
support verifying packets in an incomplete group.

We leverage the unforgeability of verification fields Vi to
solve the challenge. Recomputing Vi requires σ (Equation 5
in Section IV-C). Taking into account packet losses, we no
longer divide σ into different packet headers. Otherwise,
any missing packet leads to an incomplete σ and thus fails
recomputing Vi. Therefore, we choose to copy σ in all packets
during Construction. Upon reaggregation, we recompute
Vi using h and σ available in any packet1. Then we leverage
the design fact that Vi is distributed across packets during
Construction. When Vi is hard to forge, we expect that
valid packets carry the corresponding segments of recomputed
Vi. This helps a router to identify valid packets out of an
incomplete group during reaggregation. The router then acts
as a new source and performs aggregation validation over the
new group of identified valid packets.

Protection from untrusted new sources. To enable a router
as the new source, we require that end-hosts and routers share
pair-wise secret key. It is critical to prevent the new source
from manipulating its privilege. An untrusted new source may

1Note that h and σ should be identical in valid packets of the same group.
Invalid packets with different h and σ can be easily detected and filtered.
We hereby consider the attacker less incentive to inject invalid packets with
incorrect h and σ.

10 15 20 30 40 45
Packet Loss Rate (%)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (G

bp
s)

Symphony (m = 2)
Symphony-PR (m = 2)

Symphony (m = 8)
Symphony-PR (m = 8)

EPIC

Fig. 12. Comparison of throughput with relatively high packet loss rates on
an 8-hop path with 1,000-byte payloads.

attack path validation in the following ways. First, an untrusted
new source may reroute a packet to a different path. Then it
substitutes the original SessionID with the one corresponding
to the new path. The new SessionID is used for constructing
the proofs. Second, an unstrusted new source may even modify
packet payloads. Third, the new source is allowed to re-group
packets and re-construct verification fields of the new group.
Field σ carrying credentials of nodes prior to the new source
is supposed to be overwritten. An untrusted new source may
turn a mis-forwarded packet into a valid one.

To combat the first two attacks, we introduce a signed
binding between a packet and its forwarding path by the
original source. Since the forwarding path of a packet can
be vouched by SessionID, we construct the signed binding of
packet P as:

δ = MACK0n(SessionID||P.payload), (9)

where K0n is the shared key between the original source and
the destination. Any new source without the knowledge of K0n

can hardly forge a valid δ after it reroutes a packet to a different
path with a different SessionID or modifies the packet payload.

We further combat the third attack by introducing an
unforgeable field ϵ to track the packet forwarding history.
The original source constructs ϵ by nested encryption over the
signed binding δ as:

ϵi =

{
EncK0n

(δ), if i = 0;

EncK0(n−i)
(ϵi−1), if 1 ≤ i ≤ n− 1.

(10)

Specifically, we iteratively encrypt δ using the shared
keys with nodes backwards from the destination during
Construction. Upon Update, ϵ is iteratively decrypted
by one router after another. This associates ϵ with credentials
of routers. If a packet traverses all the routers on the specified
path in the correct order, ϵ received by the destination should
be equal to δ.

Results. We implement Symphony with Packet Reaggregation
(i.e., Symphony-PR) and evaluate its resistance to disruptive
packet losses. Figure 12 extends the results in Figure 11 with
Symphony-PR for comparison under relatively high packet loss
rates. In comparison with Symphony, Symphony-PR exhibits
higher resistance to packet losses. It outperforms Symphony
with 8-packet groups and Symphony with 2-packet groups
when the packet loss rate reaches 20% and 30%, respectively.
When the packet loss rate is as high as 45%, Symphony-PR
with 2-packet groups and Symphony-PR with 8-packet groups
yield a throughput 5.50 times and 5.00 times that of Symphony

15

2 4 6 8 10 12
Path Length

0

2

4

6

8

10

Ti
m

e
(

s)

(a) Construction

EPIC Symphony (m = 2) Symphony (m = 8)

2 4 6 8 10 12
Path Length

0

2

4

6

8

10

(b) Processing
Fig. 13. Comparison of (a) construction time per packet on the source and
(b) processing time per packet on the router with 1,000-byte payloads in a
multihop testbed with varying path lengths and group sizes.

with 2-packet groups and Symphony with 8-packet groups,
respectively. EPIC is less sensitive to packet losses than are
both Symphony and Symphony-PR. As the packet loss rate
increases from 10% to 45%, EPIC, Symphony with 2-packet
groups, Symphony-PR with 2-packet groups, Symphony with
8-packet groups, and Symphony-PR with 8-packet groups
reduce throughput by 36.51%, 98.21%, 84.93%, 97.19%, and
80.01%, respectively. Note that this does not necessarily render
EPIC more efficient. Both Symphony and Symphony-PR can
benefit from our proposed aggregate validation technique for
efficiency. EPIC outperforms Symphony-PR with 8-packet
groups only when the packet loss rate is disruptively high (e.g.,
45%).

L. Multihop Testbed

Finally, we conduct performance evaluation in a real de-
ployed multihop testbed. The testbed is built on rented c6e
servers from cloud computing services by Alibaba Cloud [17].
It supports up to a 12-hop path. Each c6e server features
with four 3.2 GHz Intel Xeon Platinum 8269CY (Cascade
Lake) processors. However, it allows only one 10 Gbps elastic
NIC to be mounted and thus does not support multi-core
acceleration as in Section VI-I. We hereby focus on single-core
evaluation instead. Furthermore, given that Symphony keeps
outperforming Symphony-PR and EPIC under normal network
conditions with packet loss rates lower than 20% (Figure 12),
we do not consider packet losses in testbed experiments.

Figure 13 reports the evaluation results of execution time.
Both construction time on the source and processing time on
each router get accelerated in comparison with the measure-
ments on our local server (Figure 5 and Figure 6). This is
because the rented server offers more computation resources.
As with the comparison effect on our local server, Symphony
continues to outperform EPIC. We first analyze the results
of construction time in Figure 13(a). When the path length
increases from 2 to 12, construction time of EPIC increases
from 1.52 µs to 9.98 µs while that of Symphony with 2-
packet groups and Symphony with 8-packet groups increases
from 1.34 µs to 5.50 µs and from 0.36 µs to 1.44 µs,
respectively. Symphony with 2-packet groups and Symphony
with 8-packet groups thus respectively offer 1.13×∼1.81× and
4.22×∼6.93× over EPIC. We then discuss the results of pro-
cessing time that take into account both proof verification and
proof update in Figure 13(b). All solutions under evaluation
provide a relatively constant processing time regardless of the
path length. EPIC takes about 2.31 µs to verify a packet.

2 3 4 5 6 7 8 9 10 11 12
Path Length

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

EPIC Symphony (m = 2) Symphony (m = 8)

Fig. 14. Comparison of throughput with 1,000-byte payloads in a multihop
testbed with varying path lengths and group sizes.

Symphony with 2-packet groups takes about 0.63 µs and
is 3.67× faster than EPIC. Symphony with 8-packet groups
further boosts processing speed and takes only about 0.17 µs,
being 13.59× faster than EPIC.

Figure 14 shows the evaluation results of throughput. Since
the source takes more time to construct proofs than a router
takes to verify them (Figure 13), the source tends to be the
bottleneck of throughput. Furthermore, longer paths cost the
source more time to construct proofs as shown in Figure 13(a).
Throughput thus decreases with path length (Figure 14). Given
a fixed path length, both Symphony with 2-packet groups and
Symphony with 8-packet groups yield higher throughput than
EPIC does. Consider a 2-hop path for example. Throughput of
EPIC, Symphony with 2-packet groups, and Symphony with
8-packet groups is 2.10 Gbps, 2.96 Gbps, and 8.12 Gbps,
respectively. When the path length increases to 12, throughput
of EPIC, Symphony with 2-packet groups, and Symphony
with 8-packet groups becomes 0.64 Gbps, 1.19 Gbps, and
3.74 Gbps, respectively. In summary, Symphony with 2-packet
groups and Symphony with 8-packet groups respectively
achieve 1.41×∼1.86× and 3.87×∼5.84× higher throughput
than EPIC does.

VII. RELATED WORK

In this section, we review existing path validation solutions.
ICING [39] is acknowledged as the first path validation scheme
with a highly strict security assumption, requiring pair-wise
shared keys among end-hosts and routers. Subsequent solutions
trade security for efficiency. For example, OPT [33] and most
solutions afterwards improve computation efficiency by not
enforcing pair-wise shared keys. They consider the source as
trusted and require that symmetric keys be shared between
only the source and every co-path node (i.e., each intermediate
router and the destination). The source then pre-computes
proofs for these co-path nodes using the shared keys. This
helps to reduce the overall computation overhead and in turn
improves efficiency. PPV [48] further adopts a probabilistic
way to validate packets only at sampled routers instead of all
routers along the path. OSV [9], [10] uses matrix computation
to replace cryptographic computation. Such a substitution
significantly improves the efficiency by simplifying the compu-
tation complexity. Finally, the state-of-the-art EPIC [36] carries
only partial proof in packets to improve efficiency.

We next present the key design strategies of related work
and compare them with Symphony proposed in this paper.
Symphony identifies packet-wise validation as a fundamental
efficiency bottleneck for existing solutions. It then explores

16

an aggregate validation technique to achieve efficient path
validation in a group wise way.

A. Evolution

ICING [39] requires every router to compute a proof
for each downstream router separately and uses aggregate
MAC [5], [31] to merge the original O(n2) proofs into O(n)
fields. Each field corresponds to an intermediate router on the
path and is verified using upstream routers’ proof. Once the
verification succeeds, the router updates the proof and forwards
the packet to the next hop. Each pair of nodes in ICING needs
to exchange symmetric keys to compute the proof.

Origin and Path Trace (OPT) [33] decreases the number
of proof fields that require verification and update into O(1).
It has a PVF field and several OPV fields. Each OPV field is
calculated by the source in advance based on PVF and related
to a corresponding router. When a router receives a packet,
it calculates a new proof using PVF and compares the result
with the original one embedded in the header. If they match,
verification succeeds and the router updates the PVF field and
transfers the packet to the next hop.

PPV [48] uses a probability formula to select one on-
path router to mark the packet rather than perform hop-wise
validation. This router embeds proofs with its credential into
the packet. Proofs are verified at the destination. Given a
large amount of packets with each indicating the forwarding
behavior of a path segment, the packets can jointly reflect the
forwarding behavior of the entire path. Similarly, MASK [20]
requires that the source select one intermediate router for a spe-
cific packet with the responsibility of proof generation. Once
the packet reaches the selected router, the router calculates a
proof with its credential. This proof is eventually verified by
the destination. With sufficient packets, MASK can guarantee
that all the on-path routers are covered and forwarding is
secure.

OSV [9], [10] replaces traditional cryptographic compu-
tation like MAC with a Hadamard matrix. The matrix com-
putation has a faster calculation speed and a better parallel
computability. This makes OSV has a significant improvement
on efficiency. However, its simplicity of computation results in
that OSV cannot guarantee the security and integrity of packets
during forwarding [10].

Improving upon OPT, state-of-the-art EPIC [36] shortens
the length of the proof fields by only embedding the first three
bytes of each OPV fields into packet headers. This significantly
decreases the size of packet headers in comparison with
existing schemes that store the entire proof. Like OPT, EPIC
pre-computes an OPV field for each router. To accelerate the
processing speed, proofs for intermediate routers are only a
part of the original MAC values. Shortened proofs increase
the risk of being forged.

B. Comparison

In comparison with existing solutions, we consider our
proposed aggregate validation a significantly new direction
for path validation to breach the existing efficiency barrier.
It functions more like a framework than a primitive. This
is why the validation primitives we use can be from any

existing scheme such as the state-of-the-art EPIC. In other
words, implementing aggregate validation does not necessarily
limit the choice of cryptographic primitives to symmetric
cryptography. We currently use symmetric cryptography in line
with most existing solutions because of its fast computation
[9], [10], [33], [36], [39], [48]. Our protocol can also be built
on asymmetric cryptography. As investigated in Atomos [24],
asymmetric cryptography demands a relatively higher compu-
tation capability from routers and outperforms the symmetric-
cryptography–counterpart given relatively long paths. The con-
tribution of our proposal can be justified by its up to an order
of magnitude performance improvement. New challenges are
1) investigating various design and implementation techniques
for validating packets group wise, and 2) dealing with packet
losses as even a single lost packet renders a group incomplete.
We address these challenges with guaranteed security and
efficiency.

VIII. CONCLUSION

We have studied the idea of exploring aggregate validation
for efficient path validation. It validates path compliance during
packet forwarding in a group-wise way. In contrast to existing
packet-wise validation, we aggregate a group of packets and
use them together as a single input for computing path proofs.
We then distribute proofs across packets in the same group
and thus amortize validation overhead to improve efficiency
yet without security being weakened. We implement aggregate
validation through Symphony and adapt it to Symphony-PR
toward more efficiently handling packet losses. The experiment
results show that our solution yields faster packet processing
and higher communication throughput than the state-of-the-art.
For future work, we plan to extend Symphony with dynamic
routing [25], [49] and privacy protection [25], [43]. We also
plan to open source the Artifact.

ACKNOWLEDGMENT

The work is supported in part by National Natural Science
Foundation of China under Grant No. 62172358, National Key
R&D Program of China under Grant No. 2020AAA0107700,
and National Natural Science Foundation of China under
Grant No. 62032021. We would like to sincerely thank NDSS
2024 Chairs, Shepherd, and Reviewers as well as Chairs and
Reviewers of NDSS 2022, USENIX Security 2022, USENIX
Security 2023, NDSS 2023, and CCS 2023 for your review
efforts and helpful advice. All your thoughtful and constructive
comments have guided us toward a much higher paper quality.
We would also like to extend our gratitude to the authors
that published and shared their source code to help us with
performance evaluation.

REFERENCES

[1] ISO/IEC 9797. Data cryptographic techniques: Data integrity mecha-
nism using a cryptographic check function employing a block cipher
algorithm, 1989.

[2] Owen Astrachan. Bubble sort: an archaeological algorithmic analysis.
ACM Sigcse Bulletin, 35(1):1–5, 2003.

[3] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of
the cipher block chaining message authentication code. Journal of
Computer and System Sciences, 61(3):362–399, 2000.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS, pages 62–73, 1993.

17

[5] Andrea Bittau, Michael Hamburg, Mark Handley, David Mazieres, and
Dan Boneh. The case for ubiquitous {Transport-Level} encryption. In
USENIX Security Symposium, 2010.

[6] Bob Braden, David D Clark, Jon Crowcroft, Bruce S Davie, Steve
Deering, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall,
Craig Partridge, et al. Recommendations on queue management and
congestion avoidance in the internet. RFC, 2309:1–17, 1998.

[7] Kai Bu, Avery Laird, Yutian Yang, Linfeng Cheng, Jiaqing Luo, Yingjiu
Li, and Kui Ren. Unveiling the mystery of internet packet forwarding:
A survey of network path validation. ACM Computing Surveys, 53(5):1–
34, 2020.

[8] Kai Bu, Yutian Yang, Zixuan Guo, Yuanyuan Yang, Xing Li, and
Shigeng Zhang. Flowcloak: Defeating middlebox-bypass attacks in
software-defined networking. In INFOCOM, pages 396–404, 2018.

[9] Hao Cai and Tilman Wolf. Source authentication and path validation
with orthogonal network capabilities. In INFOCOM WKSHPS, pages
111–112, 2015.

[10] Hao Cai and Tilman Wolf. Source authentication and path validation
in networks using orthogonal sequences. In IEEE ICCCN, pages 1–10,
2016.

[11] Kenneth L Calvert, James Griffioen, and Leonid Poutievski. Separating
routing and forwarding: A clean-slate network layer design. In IEEE
BROADNETS, pages 261–270, 2007.

[12] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145, 2001.

[13] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. Bbr: congestion-based congestion control.
Communications of the ACM, 60(2):58–66, 2017.

[14] Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, and Van
Jacobson. Bbr congestion control. IETF Draft draft-cardwell-iccrg-
bbr-congestion-control-00, 2017.

[15] Laurent Chuat, Markus Legner, David A. Basin, David Hausheer,
Samuel Hitz, Peter Müller, and Adrian Perrig. The Complete Guide to
SCION - From Design Principles to Formal Verification. Information
Security and Cryptography. Springer, 2022.

[16] Cisco. Video quality of service (qos) tutorial. https:
//www.cisco.com/c/en/us/support/docs/quality-of-service-qos/
qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html,
2017.

[17] Alibaba Cloud. Compute-optimized instance families.
https://www.alibabacloud.com/help/en/elastic-compute-service/latest/
compute-optimized-instance-families#section-wiv-kqq-u7o.

[18] Whitfield Diffie and Martin E Hellman. New directions in cryptography.
In Democratizing Cryptography: The Work of Whitfield Diffie and
Martin Hellman, pages 365–390. 2022.

[19] Danny Dolev and Andrew Yao. On the security of public key protocols.
IEEE Transactions on information theory, 29(2):198–208, 1983.

[20] Songtao Fu, Ke Xu, Qi Li, Xiaoliang Wang, Su Yao, Yangfei Guo,
and Xinle Du. Mask: Practical source and path verification based on
multi-as-key. In IWQoS, pages 1–10, 2021.

[21] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital
signature scheme secure against adaptive chosen-message attacks. SIAM
Journal on Computing, 17(2):281–308, 1988.

[22] Mustafa Maad Hamdi, Sami AbdulJabbar Rashid, Mahamod Ismail,
Mohammed A. Altahrawi, Mohd Fais Mansor, and Mohammed K. Abu-
Foul. Performance evaluation of active queue management algorithms
in large network. In ISTT, pages 1–6, 2018.

[23] Dan Harkins and Dave Carrel. The internet key exchange (ike).
Technical report, 1998.

[24] Anxiao He, Kai Bu, Yucong Li, Eikoh Chida, Qianping Gu, and Kui
Ren. Atomos: Constant-size path validation proof. IEEE Transactions
on Information Forensics and Security, 15:3832–3847, 2020.

[25] Anxiao He, Xiang Li, Jiandong Fu, Haoyu Hu, Kai Bu, Chenlu
Miao, and Kui Ren. Hummingbird: Dynamic path validation with
hidden equal-probability sampling. IEEE Transactions on Information
Forensics and Security, 18:1268–1282, 2023.

[26] Charles Hornig. A standard for the transmission of ip datagrams over
ethernet networks. Technical report, 1984.

[27] IETF. Path aware networking rg (panrg). https://datatracker.ietf.org/rg/
panrg/about/, 2019.

[28] Intel. Dpdk: Data plane development kit. http://dpdk.org/.
[29] Intel. Intel xeon processor e5-2630 v3. https:

//www.intel.com/content/www/us/en/products/sku/83356/
intel-xeon-processor-e52630-v3-20m-cache-2-40-ghz/specifications.
html.

[30] IRTF. Path aware networking research group panrg. https://irtf.org/
panrg, 2019.

[31] Jonathan Katz and Andrew Lindell. Aggregate message authentication
codes. Topics in Cryptology–CT-RSA 2008, pages 155–169, 2008.

[32] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway
protocol (s-bgp). IEEE Journal on Selected areas in Communications,
18(4):582–592, 2000.

[33] Tiffany Hyun-Jin Kim, Cristina Basescu, Limin Jia, Soo Bum Lee, Yih-
Chun Hu, and Adrian Perrig. Lightweight source authentication and
path validation. In SIGCOMM, volume 44, pages 271–282, 2014.

[34] Jonghoon Kwon, Juan A Garcı́a-Pardo, Markus Legner, François Wirz,
Matthias Frei, David Hausheer, and Adrian Perrig. Scionlab: A next-
generation internet testbed. In ICNP, pages 1–12, 2020.

[35] Chen-Wei Lee, Chu-Sing Yang, and Yih-Ching Su. Adaptive uep and
packet size assignment for scalable video transmission over burst-error
channels. EURASIP Journal on Advances in Signal Processing, 2006:1–
9, 2006.

[36] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. Epic: Every packet is checked in the data plane of a
path-aware internet. In USENIX Security Symposium, pages 541–558,
2020.

[37] Matthew Luckie and Ben Stasiewicz. Measuring path mtu discovery
behaviour. In IMC, pages 102–108, 2010.

[38] Robert Lychev, Michael Schapira, and Sharon Goldberg. Rethinking
security for internet routing. Communications of the ACM, 59(10):48–
57, 2016.

[39] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazières,
Michael Miller, and Arun Seehra. Verifying and enforcing network
paths with icing. In CoNEXT, pages 1–12, 2011.

[40] Vern Paxson. End-to-end routing behavior in the internet. In SIG-
COMM, pages 25–38, 1996.

[41] Jeffrey Rott. Intel advanced encryption standard instructions (aes-ni).
Technical Report, Technical Report, Intel, 2010.

[42] Arnab Roy, Anupam Datta, Ante Derek, John C Mitchell, and Jean-
Pierre Seifert. Secrecy analysis in protocol composition logic. In ASIAN,
pages 197–213, 2007.

[43] Binanda Sengupta, Yingjiu Li, Kai Bu, and Robert H Deng. Privacy-
preserving network path validation. ACM Transactions on Internet
Technology, 20(1):1–27, 2020.

[44] Mohammad Sharifkhani and Manoj Sachdev. Sram cell stability: A
dynamic perspective. IEEE Journal of Solid-State Circuits, 44(2):609–
619, 2009.

[45] Yixin Sun, Maria Apostolaki, Henry Birge-Lee, Laurent Vanbever,
Jennifer Rexford, Mung Chiang, and Prateek Mittal. Securing internet
applications from routing attacks. Communications of the ACM,
64(6):86–96, 2021.

[46] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine
Sherry. Modeling bbr’s interactions with loss-based congestion control.
In IMC, pages 137–143, 2019.

[47] Dan Wendlandt, Ioannis Avramopoulos, David G Andersen, and Jen-
nifer Rexford. Don’t secure routing protocols, secure data delivery. In
HotNets, pages 7–12, 2006.

[48] Bo Wu, Ke Xu, Qi Li, Zhuotao Liu, Yih-Chun Hu, Martin J Reed, Meng
Shenk, and Fan Yang. Enabling efficient source and path verification
via probabilistic packet marking. In IWQoS, pages 1–10, 2018.

[49] Fan Yang, Ke Xu, Qi Li, Rongxing Lu, Bo Wu, Tong Zhang, Yi Zhao,
and Meng Shen. I know if the journey changes: Flexible source and
path validation. In IWQoS, pages 1–6, 2020.

[50] Fuyuan Zhang, Limin Jia, Cristina Basescu, Tiffany Hyun-Jin Kim,
Yih-Chun Hu, and Adrian Perrig. Mechanized network origin and path
authenticity proofs. In CCS, pages 346–357, 2014.

18

