
SwiftDir: Secure Cache Coherence without Overprotection

Chenlu Miao
Zhejiang University
clmiao@zju.edu.cn

Kai Bu⋆

Zhejiang University
kaibu@zju.edu.cn

Mengming Li
Zhejiang University

mmli@zju.edu.cn

Shaowu Mao
Huawei Technologies

maoshaowu@huawei.com

Jianwei Jia
Huawei Technologies

jiajianwei@hisilicon.com

Abstract—Cache coherence states have recently been ex-
ploited to leak secrets through timing-channel attacks. The root
cause lies in the fact that shared data in state Exclusive (E) and
state Shared (S) are served from different cache layers. The
state-of-the-art countermeasure—S-MESI—serves both E- and
S-state shared data from the last-level cache (LLC) by explicitly
synchronizing the Modified (M) state across private caches and
the LLC. This has to sacrifice the silent upgrade feature that
MESI introduces for speedup. Moreover, it enforces protection
to not only exploitable shared data but also unshared data. This
further slows down performance, especially for write-after-read
intensive applications.

In this paper, we propose SwiftDir to efficiently secure
cache coherence against cover-channel attacks without overpro-
tection. SwiftDir fundamentally narrows down the protection
scope to write-protected data. Such exploitable shared data can
be uniquely identified with the write-protection permission in
the memory management unit (MMU) and do not necessarily
transit to state M. We validate this idea through tracing system
calls of shared libraries on Linux. We then investigate all three
commercial cache architectures (i.e., PIPT, VIPT, and VIVT)
and find it feasible to hitchhike the address translation process
to transmit the write-protection information from the MMU
to the coherence controller. Then SwiftDir enforces protection
over only write-protected data by serving all requests toward
them directly from the LLC with a constant latency. This not
only simplifies how MESI handles write-protected data but also
avoids how S-MESI overprotects them. Meanwhile, SwiftDir
still preserves silent upgrade for efficient handling of unshared
data. Extensive experiments demonstrate that our SwiftDir can
secure cache coherence while outperforming not only secure S-
MESI but also unprotected MESI.

Keywords-cache coherence; timing-channel attack; shared
data; address translation;

I. INTRODUCTION

Cache coherence states have recently been exploited to
leak secrets [65]. Such attacks have a different attacking
principle from a plethora of cache timing-channel attacks
that exploit the timing difference of cache hits and misses
[27], [42], [53], [54], [63], [67]. They exploit a finer-
grained timing difference among cache hits over data with
different coherence states. Consider the seminal coherence
protocol—MESI [46], [51]—for example. Serving a cross-
core access request with data in state Exclusive (E) takes
about 26 more cycles than with data in state Shared (S)
on an Intel Xeon processor [65]. This can be exploited to

⋆Kai Bu is the corresponding author.

leak secret information through a timing-channel attack. On
2.67 GHz cores, the secret leakage rate can be as high as
700∼1,100 Kbps.

Shared memory as the prerequisite for coherence attacks,
however, is critical for performance speedup and cannot be
simply disabled [47]. It can be readily available through
shared libraries or memory deduplication [26], [27], [65],
[67], [69]. Shared libraries can be dynamically loaded at
program runtime instead of having to be jammed into
executable files at compile time [1], [6], [37]. This helps to
not only control program size but also save memory space
when multiple programs with common shared libraries are
loaded. Commonly used shared libraries such as libxul
are larger than 100 MB [25]. Furthermore, shared libraries
greatly ease program maintenance. Programs need no recom-
pilation upon possibly frequent updates of shared libraries
(e.g., libc has evolved through more than 40 versions
from 1994 to 2022 [22]). Beyond shared libraries, memory
deduplication pushes memory saving to another level [2],
[28], [29], [45]. It merges identical memory pages into one
and then releases redundant memory allocations. Empirical
measurements show that process heaps and shared libraries
are among the top sources for redundant pages [5]. The total
amount of redundant pages in a system ranges from 11.3% to
85.7% [15], [30]. For individual programs, memory dedupli-
cation can save 13.7%∼47.9% of memory space [28]. This
promises 1.2×∼1.9× speedup given program cold-starts.
Practical speedup effects during program execution should
be way much higher given the 100,000× speed gap between
memory and disk [31].

The state-of-the-art solution S-MESI [66] protects coher-
ence security at the cost of sacrificing the silent upgrade fea-
ture, which is offered by MESI for speedup. Silent upgrade
enables a core to locally update E-state data and change
the coherence state to Modified (M) without synchronizing
this state to the shared last-level cache (LLC). This is also
the root cause for coherence timing-channel attacks. When
the LLC receives a cross-core request toward an E-state
data block, it cannot determine whether the data block has
already been modified by its owning core. The LLC (i.e., the
coherence controller residing alongside the LLC controller
in particular) has to relay the cross-core request to the owner
for further handling. In contrast, if a cross-core request hits
an S-state data block, the LLC can directly serve it. S-MESI

thus brings explicit M-state notification back to the game.
If the LLC is not notified to upgrade an E-state block to
state M, it can make sure that E-state LLC data remain up
to date. This makes both E-state and S-state data be directly
served from the LLC, successfully mitigating the E/S timing
difference.

Albeit S-MESI’s effectiveness, we find that its speedup
sacrifice essentially arises from its overprotection enforce-
ment. S-MESI pulls back the silent upgrade effect for all
data without discrimination. However, as with various other
cache timing-channel attacks [26], [38], [67], coherence
timing-channel attacks can exploit only shared data through
shared memory [65]. It is inessential to overprotect unshared
data from coherence timing-channel attacks. We should
rethink secure coherence and strive for a solution without
overprotection and its caused performance degradation.

In this paper, we present SwiftDir as the first secure yet
efficient cache coherence without overprotection. It aims to
narrow down the protection scope to only exploitable shared
data. To this end, we answer a series of key questions:

• How to accurately identify exploitable shared data?
• How to efficiently notify the coherence controller with

data sharing status?
• How to securely modify coherence toward different

handling strategies for shared and unshared data?

Through tracing system calls on systems such as Linux,
we find that shared data can be accurately identified using
their write-protected permission found inside the memory
management unit (MMU). We then investigate all three com-
mercial cache architectures (i.e., PIPT, VIPT, and VIVT) to
figure out how the MMU interacts with cache controllers. We
find it feasible to hitchhike the address translation process
to transmit the write-protection information from the MMU
to the cache controller. Specifically, while accessing page
tables, we extract not only the translated address as usual
but also its associated read/write bit. Using this read/write
bit as an argument, we introduce only one lightweight
modification to cache coherence. That is, we essentially
develop a finer-grained GETS coherence request, with a
newly introduced GETS_WP to handle write-protected data
and with the original GETS to handle the other data.

SwiftDir then closes the E/S timing gap of exploited
shared data by essentially removing their E states. It achieves
so by directly setting initial loads of write-protected data into
state S. The rationale behind such modification is that write-
protected data are not supposed to associate with the M state.
They do not necessarily require the E state either for ease
of silent E→M upgrade. Therefore, our protection scheme
not only effectively avoids overprotection in S-MESI but
also essentially simplifies how MESI handles write-protected
data. In other words, it protects cache coherence through
simplification rather than complication. Even if the write-
protected permission may be somehow used to regulate

unshared data of special interests, SwiftDir can simply yield
a higher efficiency out of the enlarged protection scope.

In summary, we make the following major contributions
to secure cache coherence even with performance gains.

• We investigate the state-of-the-art S-MESI against co-
herence timing-channel attacks and identify overprotec-
tion as a key barrier to system performance (Section II).

• We present SwiftDir as the first attempt to efficiently
secure cache coherence without overprotection (Sec-
tion III). It narrows down the protection scope to only
exploitable shared data.

• We explore implementation strategies that make Swift-
Dir applicable to practical memory and cache architec-
tures (Section IV). SwiftDir not only effectively avoids
overprotection in S-MESI but also essentially simplifies
how MESI handles write-protected data.

• We implement SwiftDir using the gem5 simulator [43]
and validate security and performance of SwiftDir
with extensive single-threaded SPEC CPU 2017 bench-
marks, multi-threaded PARSEC 3.0 benchmarks, multi-
threaded read-only benchmarks, and write-after-read
intensive benchmarks (Section V). Experiment results
show that SwiftDir can successfully prevent coherence
timing-channel attacks. It outperforms both MESI and
S-MESI by completing about 900,000 more instructions
per second on a 3 GHz processor. For write-after-
read intensive benchmarks, our SwiftDir can reduce the
execution time of S-MESI by up to 61.79% and thus
yield a 2.62× program speedup.

II. PROBLEM

In this section, we first investigate how existing timing-
channel attacks exploit coherence states. We then underline
the limitation of the state-of-the-art countermeasure that sim-
ply nullifies exploitable yet speedup-oriented states. We will
present our SwiftDir solution to secure coherence protocols
while retaining speedup benefits in Section III.

A. Cache Coherence

Cache coherence should be preserved on any multicore
system such that different cores can access the same value
for the same memory location. In a multicore cache hier-
archy, all cores share an LLC while each of them owns at
least one layer of private cache. Consider, for example, when
both core A and core B have a copy of memory location
X in private caches. If core A modifies the value of its
local copy and core B receives no information about the
modification, subsequent accesses to memory location X on
core B will incorrectly return its local stale copy. To avoid
such incoherence issues, cache coherence protocols associate
each cached data block with a coherence state. Coherence
states may be updated upon access operations on local or
remote cores. They ultimately help to identify whether a data

block holds the latest value for its corresponding memory
location.

1) Coherence States: At the heart of a cache coherence
protocol is a finite-state machine that models how coherence
states transit among each other upon which memory access
requests. Its logic is implemented via a coherence controller
in hardware. Individual coherence controllers are integrated
into controllers of different storage components such as
cache, memory, and direct memory access (DMA). A coher-
ence protocol not only defines finite-state machines inside
each coherence controller but also coordinates the interaction
across different coherence controllers. It is memory requests
that initially trigger coherence events. Upon receiving a co-
herence event targeting a certain copy, a coherence controller
may take some actions (e.g., invalidating a local copy if
another copy with the same memory location is modified
on another core) and change the copy’s state (i.e., state
transition) if necessary. Actions can also trigger further
requests or responses. In other words, state transition is
not necessarily atomic. A state may need an acknowledge
response or a returned data block to transit to another state.
States that mark the start and end of a memory access
request are referred to as stable states. States in between
the transition of two stable states are called transient states
[46], [48], [49].

We next review typical coherence protocols focusing on
their stable states for brevity. As with most cache coherence
designs in the literature, we omit discussing transient states
whenever this does not impede understanding.

2) Coherence Protocols: MSI. The MSI protocol is sem-
inal and all cache coherence protocols deployed on modern
multicore chips inherit its three states—Modified, Shared,
and Invalid [32], [46].

• Modified (M). In the M state, a data block is dirty and
represents the only copy that holds the latest value for
its corresponding memory location across caches and
memory. Access requests for this memory location on
other cores should be forwarded to the core caching the
modified data block.

• Shared (S). In the S state, a data block is clean and
shared. It can be used to serve access requests from
both local and remote cores.

• Invalid (I). In the I state, a data block is invalid. A
request to it on the local core leads to a cache miss.

MESI. The MESI protocol introduces an Exclusive state
to make the traditional S state more fine-grained and save
coherence traffic. MESI and its slight variants such as
MOESI and MESIF [23] prevail in most modern processors
including Intel Xeon and AMD Opteron [65].

• Exclusive (E). In the E state, a data block is clean and
is exclusively cached on the core where it currently
resides. No valid copy for the same memory location
resides on other cores.

Private
Cache

LLC

❶ ❷❸

Core A Core B CoreCCore A Core B CoreC

Directory

❶ ❷

❶ Core A requests Directory for
 memory location X
❷ Directory forwards request to Core B
❸ Core B sends response to Core A

❶ Core A requests Directory for
 memory location X
❷ LLC sends response to Core B

(a) E-State Coherence Request (b) S-State Coherence Request

E X

E X

S X S X

Directory S X

Figure 1. Handling of coherence requests for E-state and S-state data in
MESI.

The E state helps to accelerate write-after-read accesses [46],
[65]. Without the E state, MSI marks a clean data block
with the S state and has no means to further determine
whether the S-state block is the only copy in the cache
hierarchy. To serve a subsequent write request targeting the
S-state block, the core cannot simply update the data value
or upgrade its S state to the M state. Instead, it needs to first
request ownership from the coherence controller; this request
triggers further invalidation commands to other cores for
avoiding potential stale copies therein [48]. MESI introduces
the E state to ensure that a data block is the only cached
copy for its corresponding memory location. Once a core
initially loads a data block, it sets the block in state E. Then
its subsequent write to the E-state block can be completed
without triggering coherence messages to other cores.

3) Coherence Architectures: Depending on where to store
the coherence states, coherence protocols can be archi-
tectured in two ways [60]: snooping and directory-based.
Snooping coherence protocols require each core to locally
track the coherence states of all its cached blocks. Since a
core has no idea of the exact data and coherence states on
other cores, cache accesses that might affect copies on other
cores trigger broadcast messages. For example, whenever
a cache miss occurs, the requesting core broadcasts its
requests to all the other cores via a bus or an interconnection
network. Every core with the requested data block responds
to the requesting core, following broadcast as well. With
the simplicity of snooping comes the limited scalability to
large-scale multicore chips. Therefore, modern processors
turn to directory-based coherence protocols [19], [31], [46].
We focus mainly on directory-based coherence protocols
in this paper. They store coherence states of all cached
blocks in a centralized or distributed directory. Cores direct
their access requests to the directory, which then decides
where to forward the requests for fetching the requested
data. Different cache layers return the requested data with
different access latencies. Such a timing difference has
recently been exploited for cover-channel attacks [65].

B. Coherence Attack Exploiting E/S States

Timing difference. We showcase the exploitable timing
difference of directory-based coherence protocols in Figure 1

[65]. Specifically, it arises from different access latencies for
fetching data blocks in E state and S state upon a cache miss.
Figure 1(a) presents the process to access an E-state data
block for memory location X in the LLC. Since Core A has
no copy of data with memory location X in its private caches,
it sends a request for memory location X to the directory
(step 1). The directory finds that the X-addressed data block
is exclusively cached on core B. Although the LLC also
has a copy for memory location X, the E state makes the
directory hard to ensure whether the value in the LLC is
obsolete. Therefore, the directory forwards the request to
the owner—Core B (step 2). Upon receiving the forwarded
request, Core B responds Core A with the requested data
block for memory location X (step 3). In contrast, when
the requested data block is in the S state (Figure 1(b)),
the directory ensures that the copy in the LLC holds the
same value with that of other copies cached in some core’s
private caches (i.e., Core B and Core C in this example).
The directory thus more quickly returns the requested data
block from the LLC instead of another core’s private caches.

Measurements on an Intel Xeon processor reveal an about
26-cycle timing difference for accessing E- and S-state data
[65]. This is sufficient for building an exploitable timing
channel [7], [8], [65].
Threat model. We consider an attacker that exploits the
timing difference for accessing shared data in E and S
states via a recently discovered timing-channel attack [65].
It employs two colluding processes—sender and receiver on
a multicore processor. The sender and receiver first construct
shared memory by directly calling a shared library or
indirectly leveraging memory deduplication [26], [27], [65],
[67], [69]. The sender aims to leak secrets to the receiver
without directly transmitting the corresponding data; this
helps evade forensics or similar auditing techniques [65].
It modulates the secret through coherence states (i.e., E and
S) of shared data. It can also create threads on different
cores. As for the receiver, it can neither directly access the
secret data nor direct communicate with the sender; but it
can decode secrets through the E/S timing channel.

Note that the E/S timing channel abuses only coherence
states by read operations on shared data. Read operations
crafted by the attacker aim to delicately manipulate coher-
ence states for encoding and decoding secrets. They are
different from heavy read operations used in the Rowham-
mer attack to corrupt victim data [34]. We consider the E/S
timing channel orthogonal to another type of attacks that ex-
ploits write operations on shared data [11], [47]. Specifically,
they leverage the fact that writing a shared page (by memory
deduplication) triggers a copy-on-write page fault. A private
copy of the shared page need be spawned first; the private
copy then serves the write operation. This makes writing a
shared page slower by an order of magnitude than writing
a non-deduplicated page. An exploitable timing channel is
thus formed. A recent software protection called VUsion

[47] mitigates exploits of both read and write operations
on shared data. Its key idea is enforcing copy-on-access on
both shared and non-shared pages. This makes sure that no
shared data be brought into caches. However, this may open
a door for denial-of-memory and denial-of-cache attacks.
Colluding programs can deliberately access a shared library
or pre-agreed data to quickly spawn many copies of identical
content to fatigue both memory and cache spaces.

In this paper, we follow the direction of the state-of-the-
art protection against E/S coherence attacks [66], striving for
an efficient hardware solution without inducing additional
vulnerabilities. The focus of protection lies in read opera-
tions on shared data. For copy-on-write attacks [11], [47],
we suggest to consider a copy-on-write page fault as a write
miss and integrate efficient handling of write misses. This
benefits from the essential difference between read misses
and write misses. Read misses serve instructions with inputs.
The time for handling a read miss can hardly be taken out
of the instruction execution time. In contrast, write misses
essentially serve for committing outputs. The quickest way
to handle them is to offer some place to write to. For
example, a potential efficient solution can be inspired by
the non-allocate write policy. Write results may take effect
in some dedicated cache/memory space rather sooner before
the block/page to be written gets available. We consider this
a different generic hardware-design direction and leave it for
future work.

As with [65], [66], we also do not consider other orthog-
onal timing-channel exploits through, for example, cache
hit/miss [14], [35], [41], [44], [59], cache replacement [12],
[61], port contention [8], TLB hit/miss [17], [24], [57], or
branch prediction [4], [16], [18].
Covert-channel attack. Consider a shared memory location
X for example. The sender and receiver may agree to
transmit bit 1 via E-state X and bit 0 via S-state X. To
place X in the E state, the sender can create a thread on one
core to initiate a cold-start access to memory location X.
To place X in the S state, the sender can create two threads
on two cores; both threads then access memory location X.
When the receiver accesses memory location X, it measures
the access latency and identifies sate E or S given a slow
or fast access, respectively. Finally, the receiver retrieves the
secret bit by respectively decoding state E or S to bit 1 or
0. This covert-channel attack can leak secrets at a high rate
of 700∼1,100 Kbps on 2.67 GHz cores [65].
Side-channel attack. We find that the preceding covert-
channel attack can be easily extended to build equiv-
alent side-channel attacks as in [11], [47]. Specifically,
the side-channel attack of interest [11], [47] aims to in-
fer whether victim shared-data have been accessed. Two
colluding attack-processes can exploit the E/S channel as
follows to impose such a side-channel attack on a victim
process. First, one attack process accesses victim shared-
data, the coherence state of which will be set as E. Within

1. write X

2a. upgrade

EMA2b. transition

3a. ack

4. transitionPrivate
Cache

LLC Directory E X Directory M X

3b. transition

E X M XX

Figure 2. E→M transition in S-MESI.

a predefined interval, if the victim process also accesses the
same data, the coherence state transits to S. Otherwise, it
remains E. Then, upon the predefined interval times up,
the other attack process turns to access this same data.
The access latency reveals whether the coherence state is
E or S and thus whether the victim process has accessed
the victim data. Such side-channel attacks are proven to 1)
disclose which websites the victim have accessed and which
programs the victim has executed, 2) leak HTTP password
hashes, and 3) break address space layout randomization
(ASLR) [11], [47].

C. Countermeasure Nullifying E State
The state-of-the-art countermeasure—S-MESI—returns

the requested data in both states E and S from the LLC
[66]. However, this essentially nullifies the silent upgrade
effect from E to M that the E state is supposed to offer.
When traditional silent upgrade updates the E-state block in
private caches into state M, its corresponding copy in the
LLC stays in state E. Directly returning E-state data from
the LLC likely results in accessing stale data. Therefore, S-
MESI revokes silent upgrade and enforces the M state to be
synchronized across both private caches and the LLC.

Figure 2 showcases the modified E→M transition in S-
MESI. Upon receiving a write request for a private data
block in state E (step 1), the core sends a coherence request
to the LLC for privilege upgrade (step 2a) and transits state
E to a transient EMA state (step 2b). It then waits for the
LLC’s acknowledgement (step 3a), which indicates that the
LLC permits the upgrade and updates its coherence state
from E to M (step 3b). The acknowledgement from the LLC
triggers private caches to update the EMA state to the M
state. This completes the handling of a write access request.
For subsequent access requests toward the M-state block
in the LLC, the coherence controller uses the M state to
determine that the block has been modified in private caches
and it should forward the request to private caches.

Albeit its effectiveness against coherence attacks exploit-
ing E/S states, the state-of-the-art S-MESI [66] essentially
degrades MESI to MSI. The E state is necessary for opti-
mizing MSI performance (Section II-A2). Nullifying it from
MESI leads to inevitable performance slowdown, especially
for programs with heavy writes.

III. OVERVIEW

In this section, we present SwiftDir as a fundamentally ef-
ficient solution for secure cache coherence. We first identify

Table I
TRANSIENT STATES OF INTEREST ON L1 [21], [46].

State Description
ISD I→S/E waiting for Data response
EMA E→M waiting for LLC’s ACK

Table II
TRANSIENT STATES OF INTEREST ON LLC [21], [46].

State Description

IEDB I→E
waiting for memory’s Data and L1’s Unblock

IEB I→E
waiting for L1’s Unblock

ISD I→S
waiting for Data response

ESDB E→S
waiting for L1’s Data and L1’s Unblock

ESB E→S
waiting for L1’s Unblock

overprotection as the root cause for inefficiency of S-MESI.
It revokes silent upgrade from state E to state M for all
types of data. However, only shared data can be exploited
by coherence timing-channel attacks. We are motivated to
minimize the protection scope. We find that exploitable
shared data belong to write-protected data, whose E state
is redundant. We can simply remove their E state from
coherence to fundamentally throttle the exploited E/S timing
difference. This promises a way of protection by simplifica-
tion rather than complication. SwiftDir can outperform not
only the state-of-the-art secure coherence protocol but also
unprotected ones.

A. Motivation

The state-of-the-art S-MESI traps in an intrinsic dilemma
where performance and security are deemed contradictory
[66]. The introduction of state E brings better performance
at the cost of vulnerability [65]. To regain security, it seems
that we have to degrade the E state with performance
sacrifice. To showcase this dilemma, we present a thorough
analysis of the performance of MESI (Section II-A2) in
comparison with that of S-MESI that nullifies the E state
[66] (Section II-C).

For ease of understanding the protocol details, we first
clarify necessary coherence states and events in Tables I, II,
and III. For the L1 cache and LLC, the four stable states—
M, E, S, and I—have been defined in Section II-A2. Table I
and Table II further define the transient states of our interest.
We formulate a transient state as S1S2

R. In most cases,
the transient state appears during the transition from stable
state S1 to stable state S2 and the transition cannot complete
until receiving some Responses. For example, transient state
IEDB appears during the I→E transition while waiting for a
response of the requested Data and then an unBlock action
of the L1 cache. Only in rare cases does the ending stable
state S2 in S1S2

R turn to another stable state according to
the exact response. For example, ISD ends up in state E if
the core that issues the related request is the only core to

Core

L1

LLC

Memory

2. Callback1. Store

L1 E M

Store

Core

L1

LLC

Memory

4. Callback1. Store

L1 E

Store / Upgrade

(b) S-MESI

2. Upgrade 3. ACK
M

ACK

LLC E M

Upgrade / ACK

EMA

(a) MESI

LLC E

Figure 3. Comparison of E→M transition in MESI and S-MESI.

Table III
COHERENCE EVENTS OF INTEREST [21], [46]. GETS_WP IS THE ONLY

COHERENCE REQUEST INTRODUCED BY SWIFTDIR.

Event From To Description

Load Core L1 core loads data
from cache

Store Core L1 core writes data to cache
Data_From
_Owner

L1 L1 L1 sends data to
remote requestor’s L1

GETS L1 LLC L1 loads data from LLC
WB_Data
_Clean

L1 LLC write back clean data

Upgrade L1 LLC upgrade L1’s data for
write permission

Unblock L1 LLC unblock blocking data
Exclusive_
Unblock

L1 LLC unblock blocking data
with exclusiveness

Data LLC L1 LLC sends data to L1
Data_
Exclusive

LLC L1 LLC sends data to L1
with exclusiveness

Fwd_GETS LLC L1 LLC forwards GETS
request to L1

Fetch LLC Mem fetch data from Mem

Mem_Data
LLC Mem transmit data from LLC

to Mem

Mem LLC transmit data from Mem
to LLC

ACK generic generic invalidation ack

GETS_WP L1 LLC L1 reads write-protected
data from LLC

cache the returned data. More coherence events that trigger
state transitions are described in Table III.

Figure 3 compares the E→M transition of MESI and that
of S-MESI. As shown in Figure 3(a), for traditional MESI,
after receiving the core’s Store event, the L1 cache line
pertained to the memory address to store can immediately
transit from state E to state M and then serve the Store
request. No coherence events are triggered from the L1 cache
to the LLC, where no state transition is involved either;
the LLC cache line with the requested memory address
remains in the E state. However, after nullifying the E
state for security, the E→M transition of S-MESI becomes
complicated and incurs overhead. As shown in Figure 3(b),
receiving the core’s Store request, the L1 cache can
no longer follow silent upgrade. First, it should send an
Upgrade request to the LLC and transfer to state EMA,

waiting for an ACK response from the LLC. After receiving
the Upgrade request, the LLC searches the requested cache
line and sees if the cache line is in state E. If so, the LLC
sends an ACK response to the L1 cache and then transfers
to the M state. The receipt of ACK triggers the L1 cache
to transit from state EMA to state M. Not until then can
the actual data modification take place. Unlike in traditional
MESI, such a complicated E→M transition in S-MESI slows
down the common write-after-read case at a system-wide
level.

We observe that the inevitable overhead by nullifying
the E state arises from overprotection. Since the coherence
attack exploits only shared data, protecting only shared
data is sufficient. However, S-MESI nullifies state E and
complicates the E→M transition for unshared data. A fun-
damentally efficient solution should minimize its scope of
protection.

In this paper, we are motivated to secure cache coherence
against timing-channel attacks without overprotection. To
our surprise, once after we narrow down the protection
scope, we even do not have to adopt costly solutions like
the complicated E→M transition in [66]. Instead, we de-
velop a lightweight modification to secure cache coherence
while both simplifying processing of exploitable shared data
and remaining traditional efficient processing of unshared
data. It breaks down the security-performance dilemma
and promises even higher performance than unprotected
coherence.

B. Methodology

Toward minimizing the scope of protection to only ex-
ploitable shared data, the ultimate goal is to enable a co-
herence protocol to identify shared data and hide the timing
difference from their accesses in E and S states. We highlight
three major strategies for our SwiftDir to achieve the goal
and elaborate on the associative key ideas afterwards.
Accurate identification of exploitable shared data. This
aims to narrow down the source of coherence timing-channel
attacks that exploit the timing difference for accessing shared
data in E and S states.
Efficient association of data and sharing status in the
cache hierarchy. This aims to limit hardware overhead for
tracking shared data in the cache hierarchy.

Secure modification of shared-data coherence. This aims
to enforce secure coherence on exploitable shared data
against timing channels while remaining traditional efficient
coherence handling of unshared data.

1) Accurate Identification of Shared Data: There are two
ways to produce exploitable shared memory for coherence
timing-channel attacks—shared library and memory dedu-
plication [65]. Through investigating memory management
on mainstream OSes (Section IV-A), we find that their cor-
responding access permissions are read-only and copy-on-
write, both of which can be categorized into write-protected.
We can thus accurately identify exploitable shared data via
write-protected data. Furthermore, we find that the MMU
already associates a permission bit to a unit of allocated
memory to specify whether it is write-protected. SwiftDir
directly inherits this bit for identifying write-protected data
without introducing any extra complexity.

2) Efficient Association of Cached Data and Sharing
Status: A straightforward way to mark write-protected data
in the cache hierarchy is to associate each cache line with
an one-bit indicator. However, this consumes cache capacity
and complicates hardware logic. We observe that an access
request needs to traverse the MMU for address translation
before the translated address can be used to complete cache
access. Therefore, we transmit the write-protected bit along
with its corresponding translated address from the MMU
to the cache hierarchy. It is used as a real-time argument
for access handling procedures without being a necessary
hardware add-on to each cache line.

A key question to address hereby is whether the relative
position of the MMU with respect to the cache hierarchy
makes a difference for MMU-cache interaction in Swift-
Dir. To answer this question, we thoroughly investigate all
common cache architectures including physically indexed
physically tagged (PIPT), virtually indexed virtually tagged
(VIVT), and virtually indexed physically tagged (VIPT) in
Section IV-B. Note that physically indexed virtually tagged
(PIVT) is usually not considered in both of academia and
industry; it makes no sense to use a virtual address for
tagging when its physical address is already known [36]. The
investigation reveals that different cache architectures bring
no significant difference to our SwiftDir design. Regardless
of the exact architecture, SwiftDir can always be satisfied in
that prior to accessing the PIPT LLC, the virtual-to-physical
address translation has already taken place.

3) Secure Modification of Shared-Data Coherence:
Leveraging the identification of shared data from the MMU,
we aim to efficiently secure shared-data coherence while not
affecting unshared-data coherence. Since the state-of-the-art
solution imposes a high overhead on the E→M transition
for unshared data (Figure 3), an intuitive efficient solution
may specialize an E state for shared data. Consider, for
example, using Ewp to denote this newly introduced state,
which is a stable state for write-protected data as the write-

protected permission can be used to identify shared data
(Section III-B1). It regulates both exclusiveness and write-
protection. The solution now only needs to make Ewp/S
timing difference unobservable. Specifically, upon the initial
load request for a write-protected data block, the corre-
sponding cache line directly transits to the Ewp state. Then,
to serve a subsequent remote load request, the Ewp-state
block is responded directly from the LLC, the same place
where a requested S-state block would be served. Albeit the
effectiveness against timing channels, the newly introduced
Ewp state does complicate cache coherence maintenance.

In this paper, we manage to secure cache coherence by
simplification instead of complication. We do not introduce
any extra state to protect coherence states against timing
channels. We advocate eliminating the E state for write-
protected data and set their initial loads directly with the
S state. As aforementioned, the E state aims to accelerate
the common write-after-read case. Write-protected data,
however, are not supposed to be written. They either do
not permit writes at all or trigger copy-on-write and serve
the write request on the triggered duplicate. This essentially
reveals that write-protected data need no silent upgrade
offered by the traditional E→M transition. Once after their
first loads to the cache hierarchy, we expect them to remain
the latest value and be readily suitable for serving remote
loads as S-state data. We thus set initially loaded write-
protected data in the S state, eliminating their E state.

IV. DESIGN

In this section, we detail the SwiftDir design. As sketched
in Figure 4, SwiftDir prevents timing channels by simplify-
ing coherence of exploitable shared-data (Figures 4(a)-(b))
and remains traditional efficient coherence for unexploitable
unshared-data (Figures 4(c)-(e)). For security, by eliminat-
ing the E state for shared-data, the exploited E/S timing
difference vanishes. For performance, while imposing no
overhead on unshared-data, SwiftDir accelerates the remote
load request for initially cached shared-data. This promises
a higher performance than both MESI and S-MESI do.

A. Identification of Shared Memory

We leverage the MMU to identify exploitable shared
memory and hitchhike the address translation process therein
to transmit the sharing status to the cache hierarchy. This
section focuses on the former question—how to accurately
identify shared memory from the MMU. The key idea is
that page table entries (PTEs) of shared memory managed
by the MMU set the Read/Write (R/W) field with the write-
protected permission.

1) Exploited Shared Memory is Write-protected: We start
with investigating that exploitable shared memory by co-
herence timing-channel attacks should be write-protected.
Specifically, the attacker produces shared memory by either
shared library or memory deduplication [65].

Core

L1

LLC

Memory

2. GETS

4. Mem_Data

6. Callback

5. Data_
 Exclusive

6. Exclusive_Unblock

1. Load
(Not write-
protected)

3. Fetch

L1

LLC

I ISD E

IEB

Load /
GETS

I E

Data_Exclusive /
Exclusive_Unblock

GETS / Fetch

Mem_Data
/ Data_Exclusive

Exclusive_Unblock

(c) Initial Load of Non-write-protected Data

 Core
B

L1

LLC

Memory

Core A
L1

LLC

I ISD S

Load / GETS

S S

Data

GETS / Data

(b) Remote Load after Initial Load of Write-protected Data

Core
A

L1

1. Load

2. GETS

5. Callback

5. Data

Core

L1

LLC

Memory

2. GETS
_WP

4. Mem_
Data

6. Callback

5. Data

1. Load
(Write-

protected)

3. Fetch

L1

LLC

I ISD S

S

Load (WP) /
GETS_WP

I ISD

Data

GETS_WP / Fetch

Mem_Data / Data

(a) Initial Load of Write-protected Data

Core

L1

LLC

Memory

2. Callback1. Store

L1 E M

Store

(d) Store after Initial Load of Non-write-protected Data

IEDB

 Core
B

L1

LLC

Memory

Core A L1

LLC

I ISD S

IEB

Load /
GETS

E S

Data_From_Owner
/ Unblock

GETS / Fwd_GETS

WB_Data_Clean

Unblock

(e) Remote Load after Initial Load of Non-write-protected Data

Core
A

L1

1. Load

2. GETS 3. Fwd_
GETS

4. Data_From
_Owner

4. WB_Data_clean

5. Callback

5. UnBlock

Core B L1 E S

Fwd_GETS /
WB_Data_clean&Data_From_Owner

ESDB

Figure 4. SwiftDir coherence.

Shared library. We use the Linux strace tool [56] to trace
the system calls of a program using shared libraries. In
the tracing process, an essential system call—mmap [39]—
is found to establish a mapping between file/devices and
memory [39]. Different types of mapping and related write
permissions may be created according to the exact arguments
for mmap. In particular, the prot argument determines
whether the memory page is writable. For writable memory,
the flags argument further determines whether writes to
the memory page will be made visible to other processes
and whether the underlying file will be modified [39]. For
a shared library, most of its memory (e.g., code segment
and read-only data segment) cannot be written, with the
prot argument allowing PROT_READ. Some memory re-
gion (e.g., data segment) can be written, with the prot argu-
ment and the flags argument allowing PROT_WRITE and
MAP_PRIVATE, respectively. MAP_PRIVATE represents a
write-protected permission. It first invokes the copy-on-write
operation and then writes on the new copy instead of the
original memory.
Memory deduplication. Kernel same-page merging (KSM)
is a kernel feature for memory deduplication [2]. Using
KSM, the OS uses a kernel thread to search for memory
pages with the same content. Identical pages are merged
to one physical page and redundant pages release the
memory allocation. The merging process calls for the

write_protect_page function, which handles write-
protected memory and permits the merged memory page to
be copy-on-write.

2) Write-protected Manifests in PTE R/W Field: Having
observed that exploitable shared-memory is write-protected
in Section IV-A1, we further show that the write-protected
property manifests as the read permission in the R/W field
of PTEs. A PTE consists of various fields that specify
the address of the memory page and its status such as
freshness (i.e., the Dirty bit). All these information helps
the MMU to translate virtual addresses to physical addresses
and determine whether the physical page can be accessed as
requested. In particular, we find that the R/W bit is exactly
what we can use to associate with write-protected memory
from both shared library and memory deduplication. Without
loss of generality, our findings stem from the latest stable
release of Linux 5.16.13 as of April 2022 [58].
Shared library. Upon invocation, mmap first allocates only
virtual memory pages. The arguments prot and flags
passed to mmap determine the protection bits of the vir-
tual memory pages—vm_page_prot. Following demand
paging, a physical memory page will be allocated until
its corresponding virtual address is accessed and a page
fault is triggered. The page fault handling process allocates
the physical page and invokes function mk_pte to cre-
ate its PTE. Function mk_pte takes vm_page_prot of

the virtual page as an argument to set the PTE’s control
bits. When vm_page_prot conveys private mapping (i.e.,
MAP_PRIVATE for argument flags, corresponding to the
writable shared library in Section IV-A1) and unwritable
shared mapping (i.e., MAP_SHARED for argument flags
while not PROT_WRITE for argument prot, corresponding
to the unwritable shared library), the PTE’s R/W field is
cleared to 0 (read).
Memory deduplication. In comparison with shared library
management, it is relatively easier to link the write-protected
property of memory deduplication to PTEs’ R/W fields. The
write_protect_page function for merging memory
directly sets the R/W field of the merged page’s PTE to
0 (read).

B. Argumentation of Sharing Status

SwiftDir hitchhikes address translation to transmit the
write-protected information from the MMU to the cache
hierarchy for coherence maintenance. One may wonder that
different cache architectures lead to respective complexities
to this hitchhiking method. Consider, VIVT, for example. It
allows the core to send a virtual address to the L1 cache
even prior to address translation. To address such a concern,
we thoroughly investigate all the three cache architectures
in commercial use—PIPT, VIPT, and VIVT. We find that
SwfitDir suffices for the LLC to obtain the write-protected
information of the requested data until the request arrives at
the LLC. This requirement can be easily satisfied regardless
of cache architecture, simply because that the LLC is a
physical cache and address translation should have taken
place before accessing the LLC.

1) Cache Architecture Basics: Cache architectures can be
classified in terms of whether virtual or physical addresses
used to search requested data. A cache access handles a
requested address in two steps. First, the index bits are
used to locate the corresponding cache set. Second, the tag
bits are compared with the tag fields of the cache lines
within the cache set to determine a cache hit or miss.
Accordingly, PIPT and VIVT use physical addresses and
virtual addresses in both steps, respectively. VIPT uses
virtual addresses for set indexing and physical addresses for
tag comparison. Most processors adopt VIPT and PIPT for
L1 caches. For example, ARM Cortex-A series use PIPT L1
data caches and use VIPT or PIPT for L1 instruction caches
[3]. AMD Zen processors use VIPT for L1 data caches
[40]. Intel Skylake uses VIPT L1 caches [52]. VIVT caches
are used in relatively earlier processors, such as ARM720T
and ARM926EJ-S [3]. For the shared LLC on any known
processor, it always follows PIPT.

Figure 5 demonstrates how SwiftDir hitchhikes the ad-
dress translation process to transmit the write-protected
information read from the PTE’s R/W field to the cache hier-
archy with different architectures. For ease of understanding,
we associate each case with a (where, when) property to

PIPT
L1

Cache

Physical
Address

Read/Write Bit

VIPT
L1

Cache

Core

Core
Virtual Address

Virtual
Address

Virtual
Address

PIPT
LLC

PIPT
LLC

VIVT
L1

Cache
Core PIPT

LLC
TLB

Table
Walker Unit

Virtual
Address

Virtual
Address

(a) PIPT L1 Cache

(b) VIPT L1 Cache

(c) VIVT L1 Cache

TLB Table
Walker Unit

TLB Table
Walker Unit

Physical
Address

Read/Write Bit

Physical
Address

Read/Write Bit

Figure 5. Transmission of write-protected information from MMU to
caches by hitchhiking address translation.

indicate on which cache layer and at which access step the
write-protected information reaches the cache hierarchy.

2) PIPT L1 Cache: (L1 Cache, Set Indexing): For a
PIPT L1 cache, given that cache access requires physical
addresses, address translation takes place before the access
request reaches the L1 cache. As shown in Figure 5 (a),
the core first requests the MMU for address translation. The
MMU finds the corresponding page table entry through the
translation lookaside buffer (TLB) or by page table walking,
translates the virtual address to a physical address, and
checks access permissions. Then it transmits the R/W bit
along with the translated physical address to the L1 cache.
This makes the write-protected information available as soon
as indexing sets on the L1 cache, which will later relay the
write-protected information to lower-level caches upon L1
cache misses.

3) VIPT L1 Cache: (L1 Cache, Tag Comparison): Dif-
ferent from PIPT L1 caches, a VIPT L1 cache removes
address translation from the critical path such that address
translation and cache access takes place concurrently. As
illustrated in Figure 5(b), while the MMU is translating the
virtual address, the VIPT L1 cache can already use part of
the virtual address for set indexing. When the translation
process completes, SwiftDir requires that both tag fields
and the write-protected information be sent to the VIPT L1
cache. If tag comparison for requested shared data returns
a cache miss, a coherence request containing the write-
protected information as an argument will be sent to lower-
level caches.

4) VIVT L1 Cache: (LLC, Set Indexing): For a VIVT
L1 cache, the write-protected information reaches the LLC
no sooner than the access request reaches the LLC. The
VIVT L1 cache uses virtual addresses for both set indexing
and tag comparison. As shown in Figure 5(c), address
translation takes place after L1 access and still precedes
PIPT LLC access [33]. We can thus guarantee that upon an
access request reaches the PIPT LLC, the write protected
information can be ready along with the physical address.

C. Modification of Coherence Protocol
SwiftDir imposes minimum modification on existing co-

herence protocols by narrowing down the protection scope
to only write-protected data. Motivated by the observation
that write-protected data are not supposed to be written, we
consider it less necessary to maintain their E state. SwiftDir
thus directly sets an initial load of write-protected data in
the S state. This way, write-protected data no longer transit
to the E state and are immune from timing-channel attacks
that exploit the E/S timing difference. Such a protection
simplifies coherence maintenance instead of complicating it,
which is deemed as a must by existing protection solutions.
We hitchhike the address translation process to pass the iden-
tification of write-protected data to the coherence controller.
As for non–write-protected data, SwiftDir still manages their
coherence using the original efficient coherence protocol
such as MESI.

We now detail how SwiftDir maintains coherence. Fig-
ure 4 showcases critical coherence transitions for ease of
understanding. We follow a two-level cache hierarchy with
directory-based MESI as in [65], [66]. Figures 4(a)-(b) and
Figures 4(c)-(e) target write-protected data and non–write-
protected data, respectively. Necessary coherence states and
events for understanding are listed in Tables I-III.

1) Coherence of Exploitable Shared Data: SwiftDir sets
initially loaded write-protected data to state S instead of
state E as in existing coherence protocols. To this end, we
modify the original I→E transition upon an initial load of
write-protected data to an I→S transition. This removes the
E→S transition for write-protected data and thus throttles
E/S timing channels in a fundamental way.

SwiftDir implements the I→S coherence transition for the
initial load of write-protected data as shown in Figure 4(a).
It removes the unnecessary exclusivity information of write-
protected data from the LLC. After the core initiates a load
request to a write-protected data block (step 1), the L1 cache
receives the write-protection requirement as well as the
physical address from the MMU. Since it is the initial load of
the requested write-protected data, the L1 cache encounters
a local miss. It sends a GETS_WP request to notify the LLC
that the load request targets write-protected data; L1 then
transfers to the ISD state (step 2). GETS_WP is the only
introduced coherence request by SwiftDir. It modifies the
original GETS by integrating the write-protected information
as an argument. Besides this request modification, Swfit-
Dir introduces no extra coherence states. Upon receiving
GETS_WP from L1, the LLC issues a Fetch request to
memory and transfers to the ISD state (step 3). The requested
data then transmit from memory to the LLC (step 4) and then
the L1 cache (step 5) without exclusivity attached. Given no
exclusive permission, both the LLC and L1 cache set the
received write-protected data in state S (step 5 and step 6).

2) Coherence of Unexploitable Unshared Data: As afore-
mentioned, SwiftDir remains the original coherence main-

Table IV
PERFORMANCE COMPARISON IN TERMS OF WHETHER E-STATE SHARED

AND UNSHARED DATA ARE EFFICIENTLY HANDLED.

Protocol Shared Data Unshared Data
serve E from LLC silent E→M on L1

MESI ✗ ✓

S-MESI [66] ✓ ✗

SwiftDir ✓ ✓

tenance for unshared data that are not vulnerable to the
E/S timing channel. Figures 4(c)-(e) illustrate typical co-
herence transition cases for how SwiftDir manages non-
write-protected data using MESI. It leads to no performance
overhead. In particular, SwiftDir reserves MESI’s efficient
handling of common write-after-read operations by silent up-
grade from state E to state M in the L1 cache (Figure 4(d)).
This helps SwiftDir to outperform existing protection that
enforces the E→M transition on both private caches and the
LLC (Figure 3(b)).

D. Security

SwiftDir secures cache coherence against the E/S-channel
timing attack in a fundamental way. Such a coherence attack
essentially exploits the timing difference between a remote
load of E-state shared data returned from the L1 cache and
a remote load of S-state shared data returned from the LLC.
The coherence modification by SwiftDir restrains shared
data from transiting to the E state. A direct I→S transition is
enforced instead (Figure 4(a)). Subsequent remote loads to
the shared data in caches thus always hit in S state and get
served from the LLC, as shown in Figure 4(b). This instantly
closes the exploitable E/S timing channel and prevents the
so caused timing-channel attacks.

E. Performance

SwiftDir secures cache coherence while outperforming
not only the existing solution but also the unprotected
protocol. Since SwiftDir handles shared and unshared data
differently, Table IV provides a qualitative performance
comparison in terms of whether both types of data can
be efficiently handled. We concentrate on E-state related
operations because the timing-channel attack under concern
exploits the timing gap between accesses over E-state data
and S-state data. For shared data, it is relatively more
efficient to serve a request hitting on an E-state block on
the LLC than to relay this request to the L1 cache for
handling. For unshared data, it is relatively more efficient to
remain silent upgrade of the original MESI (i.e., silent E→M
transition on the L1 cache without notifying the transition
to the LLC). We will justify the two observations shortly.
Prior to that, we conclude from Table IV that SwiftDir is the
only protocol to handle both types of data using respective
efficient choices. In contrast, both of the original MESI
protocol and state-of-the-art secure coherence protocol (i.e.,
S-MESI [66]) fail to do so.

Efficient service of E-state shared data from the LLC.
SwiftDir essentially replaces state E of shared data with state
S. This enables SwiftDir to serve requests for cached shared
data directly from the LLC. As shown in Figure 4(b), Core
A issues a remote load request to shared data previously
loaded by Core B (step 1). The requested data are in the S
state in both the L1 cache on Core B and the LLC. Core
A’s L1 receives the request and encounters a local miss. It
then forwards the request to the LLC and transits to the
ISD state (step 2). The LLC searches the requested data
and results in a local hit. Since the coherence state of the
requested data is S, the LLC acts as its owner. The LLC then
directly sends the requested data back to Core A’s L1 (Step
3), which further forwards the data to Core A and transits to
the S state. Throughout the entire process, SwiftDir enforces
neither state transition on the LLC and Core B’s L1 nor
communication between the LLC and Core B’s L1.

In contrast, the original MESI sets an initially loaded
data block (whether shared or not) on Core B in the E
state. Then a subsequent remote load request from Core
A will be processed as in Figure 4(e). It induces state
transitions on both the LLC and Core B’s L1 as well as
communication between the LLC and Core B’s L1. SwiftDir
thus protects exploitable shared data by simplifying their
coherence maintenance rather complicating that.
Efficient silent-upgrade of E→M for unshared data on
the L1 cache. While the existing secure coherence S-MESI
[66] also manages to serve a remote load of shared data
from the LLC, it achieves so by sacrificing the efficient
silent upgrade feature of MESI. This immediately slows
down the E→M upgrade of unshared data (Figure 3(b)).
However, SwiftDir remains the original silent E→M upgrade
that MESI introduces as a performance booster (Figure 4(d)).

In summary, SwiftDir outperforms the original unpro-
tected MESI and the state-of-the-art secure S-MESI in terms
of processing shared data and unshared data, respectively. It
thus secures cache coherence against timing-channel attacks
while counter-intuitively improving performance.

V. EVALUATION

Settings. We implement SwiftDir using gem5 [10], [20],
[43], a widely used cycle-level computer system simulator.
As summarized in Table V, we run SwiftDir on a processor
with 1∼4 cores and a two-level cache design in line with
related work [38], [55], [62], [68]. Each core owns private L1
Instruction and L1 Data caches. All cores share the same L2
cache. The baseline cache coherence is the directory-based
MESI protocol.
Workloads. We validate security and performance of Swift-
Dir on both single-core and multicore architectures. For
single-core experiments, we run the applications from the
SPEC CPU 2017 benchmark package [13]. We use the
benchmarks from both SPECrate 2017 Integer and SPECrate
2017 Floating Point suites. For multicore experiments, we

Table V
EXPERIMENT SETUP.

Module Configuration

Processor

1∼4 cores, 3 GHz
out-of-order 192-entry ROB
32-entry LQ & 32-entry SQ
superscalar width: 8

Private L1 I/D cache 64-Byte block, 4-way, 32 KB
RT latency: 1 cycle

Shared L2 cache
64-Byte block, 16-way
2-MB bank per core
RT latency: 16 cycles

TLB fully associative
64-entry ITB & 64-entry DTB

Memory

DDR3 1600 8x8, 1 channel
2 ranks, 8 banks per rank
1 KB row buffers
tCAS-tRCD-tRP: 11-11-11

run the applications from the PARSEC 3.0 benchmark suite
[9]. PARSEC statistics concentrate on each benchmark’s
Region of Interest (ROI), which includes the parallel code
of the benchmark for multicore execution. We then build
multi-threaded read-only applications to investigate the true
performance overhead if any for protecting different amounts
of shared data. Finally, we build typical write-after-read
intensive applications to investigate performance slowdown
induced by overprotection from the state-of-the-art secure
coherence.
Metrics. We evaluate SwiftDir security using the access
latency of data in various coherence states. The statistics
should guarantee that exploitable shared data no longer lead
to an exploitable timing difference of access latency. For
single-core applications, we evaluate SwiftDir performance
using the number of instructions per cycle (IPC). For mul-
ticore applications, we report the execution time of the
ROI because synchronization in these applications affects
the actual instruction count [50], [64]. We normalize these
metrics of SwiftDir over that of the unsafe baseline MESI,
in comparison with the state-of-the-art secure S-MESI. A
better performance calls for a higher normalized IPC or a
lower normalized execution time.
Results. Extensive experiment results show that SwiftDir
successfully throttles the traditionally exploited timing chan-
nel of shared-data accesses by unifying handling of all such
accesses in the LLC. Access latencies of shared data in
emulated SwiftDir are centralized around 17 cycles. Our
SwiftDir shows a potential to reduce the execution time of
S-MESI by up to 61.79% and thus yield a 2.62× speedup.

A. Security: Timing Channel Prevention

We measure the access latency of traditionally vulnerable
shared data to show that SwiftDir successfully prevents the
timing channel. The timing channel exploited by existing
coherence timing-channel attacks arises from different ac-
cess latencies over shared data in state E and state S. MESI
serves data in the S state directly from the shared L2 cache
where resides also the directory controller. Data in the E

� �� �� �� �� �� �� �� �� �� ���

�������������������������

���

���

���

���

���

���

�
�
�

������������� ����������������

Figure 6. SwiftDir coherence latency.

state are, however, indirectly served from the private L1
cache. To avoid the so caused timing difference, SwiftDir
manages to serve all requests to shared data directly from
L2. Let Load WP(L1I&L2S) represent such requests, where
L1I&L2S specifies that the requested data block is currently
in state Invalidate in the requesting core’s L1 and in state
Shared in L2.

Figure 6 reports the cumulative distribution function
(CDF) of Load WP(L1I&L2S) by SwiftDir, in comparison
with that of Load(L1I&L2S) by MESI. Two observations
can be drawn in Figure 6. First, SwiftDir links shared data
to write-protected data and unifies the handling of them
into Load WP(L1I&L2S). It thus leaves the attacker with
no timing difference to differentiate or exploit. Second,
the access latencies of Load WP(L1I&L2S) are central-
ized around 17 cycles and highly comparative to that of
Load(L1I&L2S). Integration of the write-protection permis-
sion into Load WP(L1I&L2S) thus imposes a negligible
overhead on Load(L1I&L2S).

B. Performance: Single-Threading

We start performance evaluation with the single-threaded
benchmarks in the SPEC CPU 2017 suite. Performance
statistics of each benchmark are collected over execution
of one billion instructions.

Figure 7 reports the normalized IPC of SwiftDir in
comparison with that of S-MESI, with MESI as the baseline.
Our SwiftDir outperforms MESI in a relatively constant
way. Only for one benchmark—xalancbmk—does Swift-
Dir yield an about 0.003% lower IPC.

In contrast, S-MESI shows a more dynamic result. Nearly
half of benchmarks yield lower IPCs using S-MESI than
using MESI, especially for bwaves (0.12% lower), wrf
(0.10% lower), xalancbmk (0.09% lower), and xz (0.07%
lower). S-MESI rarely shows a much higher IPC than MESI
does for benchmarks such as blender (0.28% higher) and
povray (0.37% higher). This behavior can be explained
as follows. S-MESI revokes silent upgrade of MESI. A
modification operation in L1 also sets the coherence state of
related data in L2 as M. L2 considers this M-state data block
as being recently accessed and makes it less susceptible to
be replaced by the Least Recently Used (LRU) replacement
policy. This further avoids related cache misses and speeds

up benchmark execution toward a higher IPC.
In summary, SwiftDir outperforms both MESI and S-

MESI in terms of most single-threaded SPEC benchmarks.
It yields a 0.03% higher IPC and a 0.01% higher IPC on
average than do MESI and S-MESI, respectively. Put in
the real context with a 3 GHz processor (Table V), this
makes SwiftDir handle 900,000 and 300,000 more instruc-
tions per second than MESI and S-MESI do, respectively.
Without considering blender and povray that dominate
the average result of S-MESI, it turns to be outperformed
by MESI with a 0.005% lower IPC. In this case, SwiftDir
yields a 0.03% higher IPC and thus 900,000 more instruction
completion per second on average than both MESI and S-
MESI do.

C. Performance: Muti-Threading

We then evaluate SwiftDir performance using the multi-
threaded benchmarks in the PARSEC 3.0 benchmark suite.
On a 4-core processor, each benchmark spawns four threads
to accelerate ROI execution. Note that the execution time
of the ROI instead of IPC is a well accepted metric
for evaluating multi-threading performance. We choose the
simmedium input set for each benchmark. Such an input
scale is considered sufficient for measuring performance
without bias.

Figure 8 reports the execution time of SwiftDir and S-
MESI normalized over that of MESI. SwiftDir outperforms
both MESI and S-MESI in terms of a shorter execution time
on average. In accordance with its performance behavior for
single-threaded benchmarks, S-MESI again shows relatively
diverse results. It averagely has a 0.41% longer execution
time than MESI does. In contrast, SwiftDir outperforms
MESI for most benchmarks. Only for three benchmarks—
dedup, freqmine, and swaptions—does SwiftDir be-
come slower than MESI by respectively 3.30%, 0.41%,
and 2.65%. We find it challenging to reason about such
performance fluctuations. We suspect that they may be
related to uneven LLC eviction rates across multiple threads
of the same benchmark. Specifically, some threads may have
higher data locality than others, which are forced to suffer
from relatively more cache misses and thus slower execution.
On average, SwiftDir outperforms both MESI and S-MESI
with a 2.01% and 2.31% shorter execution time, respectively.

D. Performance: Amount of Shared Data

As Table IV summarizes in Section IV-E, SwiftDir
promises a better performance with two efficient features—
serving E-state shared data from the LLC and preserv-
ing silent E→M transition for unshared data on the L1.
Section V-B and Section V-C have demonstrated that the
two features help SwiftDir outperform MESI and S-MESI
on average for both single-threaded and multi-threaded
benchmarks with mixed shared and unshared data. We next
crystallize how either feature contributes to performance

���
��
��

��
��
��

���
���

��
�

���
�

��
��
���
��

���
��
��
��

���
��
���

� ���
��
��
��� ��� ���
�� ��
�

��
�

��
��

��
��
���

��
���
�

��
���
��
��

��
���

�
���

�
��
�

��
��

��
���

��
�� ��

��
���

��
��
���

���

����

����

�����

�����

�����

�����

�����

�����

�
�
�
�
�
��
�
�
�
��
�
�
��
�
�

���� �������� ������

Figure 7. Single-threaded SPEC benchmarks – Normalized IPC of SwiftDir and S-MESI over that of MESI.

��
��
��
��
���

�
��
��
���

��
��
��
��
�

��
��
�

���
��
�

���
��
��
��
��
�

���
��

��
�

���
��
�
���

���
�

��
��
���
�� ���
�

��
��
��
�

��

��

���

���

���

�
�
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
��
��

�
��
�
� ���� �������� ������

Figure 8. Multi-threaded PARSEC benchmarks – Normalized execution
time over MESI.

speedup. We start with evaluating the effect of serving E-
state shared data from the LLC in this section and continue
with evaluating the effect of silent E→M transition for
unshared data on the L1 in Section V-E.

We construct a two-threaded application and pin the
threads to respective cores. We first run one thread to access
a series of exploitable shared data. Then we run the other
cross-core thread to re-access the accessed data through
remote loads. Such remote loads lead to E→S transitions for
MESI yet more efficient S→S transitions for both S-MESI
and SwiftDir. We measure the time for the re-access process.
Figure 9 reports the normalized measurement results given
different amounts of exploitable shared data ranging from
1,000 to 5,000. SwiftDir shows a comparative performance
speedup as S-MESI. SwiftDir and S-MESI reduces the
execution time of MESI by 0.46% and 0.57% on average,
respectively.

E. Performance: Write-after-read Intensive

Finally, we build write-after-read intensive applications
for performance evaluation. We consider these applica-
tions with particular interest because S-MESI leads to L1-
L2 communication upon every write-after-read operation.
Such communication is, however, unnecessary in MESI and
SwiftDir where silent upgrade (i.e., E→M transition) takes
place in the L1 cache. Furthermore, S-MESI enforces such
communication on not only exploitable shared data but also

���� ���� ���� ���� ���� �������

���������������������

����

����

����

�����

�
�
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
��
��

�
��
�
� ���� �������� ������

Figure 9. Multi-threaded read-only benchmarks – Normalized execution
time over MESI.

unshared data that are secure against coherence covert-
channel attacks. Such an overprotection may further slow
down S-MESI. To validate the preceding observations, we
compile three typical applications with intensive write-after-
read operations—array assignment, array insertion, and array
sorting.

Figure 10 reports the execution time of SwiftDir and S-
MESI normalized over that of MESI. SwiftDir and MESI
show a comparative performance. Both outperform S-MESI
in all the three write-after-read intensive applications. In
particular, Figure 10(a) and Figure 10(b) report results using
TimingSimpleCPU and DerivO3CPU in gem5 configu-
ration, respectively. TimingSimpleCPU specifies a CPU
type that does not support out-of-order execution. It helps to
scrutinize how coherence overprotection affects write-after-
read performance. In contrast, DerivO3CPU integrates out-
of-order execution into the CPU. We use DerivO3CPU to
demonstrate how coherence overprotection further hinders
performance.

As Figure 10(a) shows, SwiftDir takes a 25.99%, 18.91%,
and 10.23% shorter time than S-MESI does to run array as-
signment, array insertion, and array sorting. This accordingly
yields a speedup of 1.35×, 1.23×, and 1.14× even without
out-of-order execution. Once augmented with out-of-order
execution (Figure 10(b)), SwiftDir demonstrates a higher
potential for speedup. It reduces the execution time of S-
MESI for array assignment, array insertion, and array sorting
by 43.23%, 61.79%, and 34.3%, respectively. In other words,
SwiftDir boosts the speedup to 1.71×, 2.62×, and 1.52×.

����
�����

����
���

����
�����

�����
�

����
�����

����
��

���

���

���

���

���

�
�
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
��
��

�
��
�
�

�������������������
����

�����
����

���

����
�����

�����
�

����
�����

����
��

���

���

���

���

���

��������������

���� �������� ������

Figure 10. Write-after-read intensive benchmarks – Normalized execution
time over MESI.

VI. CONCLUSION

We have presented and evaluated SwiftDir as the first at-
tempt to secure cache coherence with performance gains. We
find that exploitable shared data belong to write-protected
data, whose E state is redundant. We can simply remove
their E state from coherence to fundamentally throttle the
exploited E/S timing difference. This promises a way of
protection by simplification rather than complication. Swift-
Dir explores a series of implementation strategies to benefit
practical systems. We validate security and performance of
SwiftDir through extensive single-threaded SPEC bench-
marks, multi-threaded PARSEC benchmarks, multi-threaded
read-only benchmarks, and write-after-read intensive bench-
marks. It outperforms not only secure S-MESI but also
unprotected MESI.

ACKNOWLEDGMENT

We would like to sincerely thank MICRO 2022 Chairs
and Reviewers for your helpful feedback. We would also
like to thank authors that published or shared the source
code of relate work for helping with our implementation
and evaluation. We wish you health and safety during the
pandemic.

REFERENCES

[1] V. Agrawal, A. Dabral, T. Palit, Y. Shen, and M. Ferdman,
“Architectural support for dynamic linking,” in ASPLOS,
2015, pp. 691–702.

[2] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory
density by using ksm,” in Proceedings of the Linux Sympo-
sium, 2009, pp. 19–28.

[3] ARM, “Virtual and physical tags and indexes.” [Online].
Available: https://developer.arm.com/documentation/
den0013/d/Caches/Cache-architecture/Virtual-and-physical-
tags-and-indexes

[4] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch history injection: On the effectiveness of hardware
mitigations against cross-privilege spectre-v2 attacks,” in
USENIX Security Symposium, 2022.

[5] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman, “An
empirical study of memory sharing in virtual machines,” in
ATC, 2012, pp. 273–284.

[6] S. Bartell, W. Dietz, and V. S. Adve, “Guided linking:
dynamic linking without the costs,” in OOPSLA, 2020, pp.
1–29.

[7] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao,
X. Zou, T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison
et al., “Speculative interference attacks: Breaking invisible
speculation schemes,” in ASPLOS, 2021, pp. 1046–1060.

[8] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus, “Smoth-
erspectre: exploiting speculative execution through port con-
tention,” in CCS, 2019, pp. 785–800.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implica-
tions,” in PACT, 2008, pp. 72–81.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
S. Rathijit, S. Korey, S. Muhammad, V. Nilay, D. H. Mark,
and A. W. David, “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[11] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est
machina: Memory deduplication as an advanced exploitation
vector,” in S&P, 2016, pp. 987–1004.

[12] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
“Reload+refresh: Abusing cache replacement policies to per-
form stealthy cache attacks,” in USENIX Security Symposium,
2020, pp. 1967–1984.

[13] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017:
Next-generation compute benchmark,” in ICPE, 2018, pp. 41–
42.

[14] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz, B. Sunar,
B. Jo Van, and Y. Yuval, “Fallout: Leaking data on meltdown-
resistant cpus,” in CCS, 2019.

[15] C.-R. Chang, J.-J. Wu, and P. Liu, “An empirical study on
memory sharing of virtual machines for server consolidation,”
in ISPA, 2011, pp. 244–249.

[16] M. H. I. Chowdhuryy, H. Liu, and F. Yao, “Branchspec:
Information leakage attacks exploiting speculative branch
instruction executions,” in ICCD, 2020, pp. 529–536.

[17] S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in ISCA,
2019, pp. 346–359.

[18] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and
D. Ponomarev, “Branchscope: A new side-channel attack on
directional branch predictor,” in ASPLOS, 2018, pp. 693–707.

[19] A. Franques, A. Kokolis, S. Abadal, V. Fernando, S. Mis-
ailovic, and J. Torrellas, “Widir: A wireless-enabled directory
cache coherence protocol,” in HPCA, 2021, pp. 304–317.

[20] gem5, “gem5.” [Online]. Available: http://www.gem5.org

[21] gem5, “Ruby memory system: Mesi two level.”
[Online]. Available: https://www.gem5.org/documentation/
general docs/ruby/MESI Two Level/

[22] GNU, “Index of /gnu/libc.” [Online]. Available: https:
//ftp.gnu.org/gnu/libc/

[23] J. Goodman and H. Hum, “Mesif: A two-hop cache
coherency protocol for point-to-point interconnects
(2009),” URL: https://www. cs. auckland. ac. nz/˜
goodman/TechnicalReports/MESIF-2009. pdf, 2004.

[24] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation
leak-aside buffer: Defeating cache side-channel protections
with {TLB} attacks,” in USENIX Security Symposium, 2018,
pp. 955–972.

[25] D. Gruss, E. Kraft, T. Tiwari, M. Schwarz, A. Trachtenberg,
J. Hennessey, A. Ionescu, and A. Fogh, “Page cache attacks,”
in CCS, 2019, pp. 167–180.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+
flush: a fast and stealthy cache attack,” in DIMVA, 2016, pp.
279–299.

[27] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches.”
in USENIX Security Symposium, 2015, pp. 897–912.

[28] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. Lui, “{SmartMD}:
A high performance deduplication engine with mixed pages,”
in ATC, 2017, pp. 733–744.

[29] F. Guo and P. Efstathopoulos, “Building a high-performance
deduplication system,” in ATC, 2011.

[30] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat, “Difference
engine: Harnessing memory redundancy in virtual machines,”
Communications of the ACM, vol. 53, no. 10, pp. 85–93,
2010.

[31] J. L. Hennessy and D. A. Patterson, Computer architecture:
a quantitative approach. Elsevier, 2017.

[32] A. M. Kaushik, M. Hassan, and H. Patel, “Designing pre-
dictable cache coherence protocols for multi-core real-time
systems,” IEEE Transactions on Computers, vol. 70, no. 12,
pp. 2098–2111, 2020.

[33] S. Kaxiras and A. Ros, “A new perspective for efficient
virtual-cache coherence,” in ISCA, 2013, pp. 535–546.

[34] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilk-
erson, K. Lai, and O. Mutlu, “Flipping bits in memory without
accessing them: an experimental study of dram disturbance
errors,” in ISCA, 2014, pp. 361–372.

[35] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, S. Michael,
and Y. Yuval, “Spectre attacks: Exploiting speculative execu-
tion,” in S&P, 2019, pp. 1–19.

[36] J. Lee, S. Hong, and S. Kim, “Tlb index-based tagging for
cache energy reduction,” in ISLPED, 2011, pp. 85–90.

[37] J. R. Levine, “Linkers and loaders,” The Morgan Kaufmann
Series in Software Engineering and Programming, 200.

[38] M. Li, C. Miao, Y. Yang, and K. Bu, “unxpec: Breaking undo-
based safe speculation,” in HPCA, 2022, pp. 98–112.

[39] Linux, “mmap - linux manual page.” [Online]. Available:
https://man7.org/linux/man-pages/man2/mmap.2.html

[40] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take a way: Exploring the security implications of
amd’s cache way predictors,” in AsiaCCS, 2020, pp. 813–825.

[41] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yuval,
and R. Mike Hamburg, “Meltdown: Reading kernel memory
from user space,” in USENIX Security Symposium, 2018, pp.
973–990.

[42] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in S&P, 2015, pp.
605–622.

[43] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Am-
slinger, M. Andreozzi, A. Armejach, N. Asmussen, B. Beck-
mann, S. Bharadwaj et al., “The gem5 simulator: Version
20.0+,” arXiv preprint arXiv:2007.03152, 2020.

[44] G. Maisuradze and C. Rossow, “ret2spec: Speculative execu-
tion using return stack buffers,” in CCS, 2018, pp. 2109–2122.

[45] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and
F. Bellosa, “{XLH}: More effective memory deduplication
scanners through cross-layer hints,” in ATC, 2013, pp. 279–
290.

[46] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood,
“A primer on memory consistency and cache coherence,”
Synthesis Lectures on Computer Architecture, vol. 15, no. 1,
pp. 1–294, 2020.

[47] M. Oliverio, H. Bos, K. Razavi, and C. Giuffrida, “Secure
page fusion with vusion,” in SOSP, 2017, pp. 531–545.

[48] N. Oswald, V. Nagarajan, and D. J. Sorin, “Protogen: Au-
tomatically generating directory cache coherence protocols
from atomic specifications,” in ISCA, 2018, pp. 247–260.

[49] N. Oswald, V. Nagarajan, and D. J. Sorin, “Hieragen: Auto-
mated generation of concurrent, hierarchical cache coherence
protocols,” in ISCA, 2020, pp. 888–899.

[50] B. Panda, “Fooling the sense of cross-core last-level cache
eviction based attacker by prefetching common sense,” in
PACT, 2019, pp. 138–150.

[51] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution for multiprocessors with private cache memories,” in
ISCA, 1984, pp. 348–354.

[52] M. Parasar, A. Bhattacharjee, and T. Krishna, “Seesaw: Using
superpages to improve vipt caches,” in ISCA, 2018, pp. 193–
206.

[53] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “System-
atic analysis of randomization-based protected cache archi-
tectures,” in S&P, 2021, pp. 987–1002.

[54] G. Saileshwar, C. W. Fletcher, and M. Qureshi, “Streamline:
a fast, flushless cache covert-channel attack by enabling
asynchronous collusion,” in ASPLOS, 2021, pp. 1077–1090.

[55] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo”
approach to safe speculation,” in MICRO, 2019, pp. 73–86.

[56] strace, “strace: linux syscall tracer.” [Online]. Available:
https://strace.io/

[57] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “Tlb; dr:
Enhancing tlb-based attacks with tlb desynchronized reverse
engineering,” in USENIX Security Symposium, 2022.

[58] L. Torvalds, “Linux.” [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux.git/tree/arch/x86?h=v5.16.13

[59] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution,” in
USENIX Security Symposium, 2018, pp. 991–1008.

[60] Q. Wang, Y. Lu, E. Xu, J. Li, Y. Chen, and J. Shu, “Con-
cordia: Distributed shared memory with {In-Network} cache
coherence,” in FAST, 2021, pp. 277–292.

[61] W. Xiong and J. Szefer, “Leaking information through cache
lru states,” in HPCA, 2020, pp. 139–152.

[62] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher,
and J. Torrellas, “Invisispec: Making speculative execution
invisible in the cache hierarchy,” in MICRO, 2018, pp. 428–
441.

[63] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell,
and J. Torrellas, “Attack directories, not caches: Side channel
attacks in a non-inclusive world,” in S&P, 2019, pp. 888–904.

[64] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas, “Secdir:
a secure directory to defeat directory side-channel attacks,”
in ISCA, 2019, pp. 332–345.

[65] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coher-
ence protocol states vulnerable to information leakage?” in
HPCA, 2018, pp. 168–179.

[66] F. Yao, M. Doroslovački, and G. Venkataramani, “Covert
timing channels exploiting cache coherence hardware: Char-
acterization and defense,” International Journal of Parallel
Programming, vol. 47, no. 4, pp. 595–620, 2019.

[67] Y. Yarom and K. Falkner, “Flush+reload: A high resolution,
low noise, l3 cache side-channel attack,” in USENIX Security
Symposium, 2014, pp. 719–732.

[68] Z. N. Zhao, H. Ji, A. Morrison, D. Marinov, and J. Torrellas,
“Pinned loads: taming speculative loads in secure processors,”
in ASPLOS, 2022, pp. 314–328.

[69] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach
to defeating side channels in last-level caches,” in CCS, 2016,
pp. 871–882.

