
Toward Taming Policy Enforcement for SDN

in The RIGHT Way: Or Can We?

Kai Bu⋆,⊲, Minyu Weng∗, Junze Bao⋆, Zhenchao Lin⋆, Zhikui Xu⋆

⋆College of Computer Science and Technology, Zhejiang University
∗College of Electrical Engineering, Zhejiang University

(⊲corresponding author: kaibu@zju.edu.cn)

Abstract—This paper explores a RIGHT framework for reli-
able policy enforcement in Software-Defined Networking (SDN).
Current SDN uses overlapping rules with common matching
packets. Even if a packet’s expectant rule is inactive, it might hit
another rule and experience incorrect yet unnoticed processing.
This leads to inconsistency between control plane and data plane,
that is, unreliable policy enforcement. RIGHT advocates three
adaptations to respectively mitigate, detect, and correct packet
processing errors. It is challenging for RIGHT to maintain both
accuracy and efficiency. We explore lightweight modifications to
current SDN policy enforcement toward better reliability. For
example, we decouple rules and priorities through tagging to
mitigate matching ambiguity. We also use exact-match rules
to efficiently, correctly process packets in the same micro-flow.
RIGHT can remedy mis-forwarded packets as well. We expect
that a comprehensive design and deployment of RIGHT helps
ensure correct per-packet processing in real time for SDN.

I. INTRODUCTION

SDN, where one controller to rule them all. Software-

Defined Networking (SDN) enables flexible network manage-

ment using a centralized controller to take over otherwise

distributed management functions [1]. These functions are

realized through applications like routing, firewall, and load

balancing [2]. Each application translates management policies

to rules understandable to SDN switches. The controller then

populates rules to switches, which accordingly process net-

work traffic. To guarantee policy enforcement correctness, the

controller should verify rules against configuration errors [3]–

[5] or security loopholes [6] before issuing them to switches.

Out of controller, out of control. Once rules are head-

ing toward switches, the controller loses control over policy

enforcement in that switches may not always conform to

populated rules as the controller intends. Possible causes are,

for example, rule installation failure [7], [8] and rule priority

fault [9], [10]. They make some packets follow unexpected

rules and breach management policies. Several methods aim

to detect the existence of such policy breach [7], [8], [10]–[12].

These methods, however, do not delve into how to fix detected

rule faults. Finding a policy breach on data plane is certainly

not the ultimate goal of network management. Instead, we

need to ensure reliable policy enforcement on data plane.

Don’t like it? Change it. Reliable policy enforcement for

SDN certainly requires more efforts beyond existing detection

methods. We cannot simply re-update detected faulty rules

either. The newly issued rules might experience faults again

or even affect other installed rules. The latter surprising

case is because SDN switches emulate rule priority using

memory location [13]. Upon each rule update, a switch needs

to guarantee that a higher-priority rule has higher memory

location. This usually induces rule relocation across the entire

memory on switches. In summary, current SDN is susceptible

to unreliable policy enforcement but has intrinsic barriers to an

ideal fix without modification. Given the importance of reliable

policy enforcement in network management, we decided to see

how we could adapt current SDN framework toward better

reliability. RIGHT is the result of that experiment.

Quest for the RIGHT change. This paper explores the

design of RIGHT (pRIority Goes to Hardware TCAM), a

framework for reliable policy enforcement in SDN. RIGHT

incorporates three main components that respectively mitigate,

detect, and correct forwarding errors at packet level in real

time. We are not proposing any radical new techniques for

building RIGHT; we explore and leverage prior wisdoms

toward an important goal of SDN’s interest—reliable policy

enforcement. Specifically, three principles and benefits of

RIGHT design are highlighted as follows.

1) Decouple rules and priorities to mitigate forwarding

errors. The major reason for stealthy mis-forwarding is over-

lapping rules. No matter whether a packet’s expectant rule is

inactive [7], [8], [11] or priority-swapping with another one

[9], [10], as long as the packet matches a rule, a switch will

process the packet as if all was well. RIGHT retrofits rules and

packet headers such that a packet matches at most one rule on

en-route switches. This not only mitigates rule priority fault

but also eases revealing rule installation failure.

2) Verify forwarding correctness at packet level. Since the

ingress switch processes original packets, we cannot alter its

rules’ matching fields. In other words, the ingress switch is still

forwarding-error prone. RIGHT enables a second-hop switch

to verify every incoming packet’s forwarding correctness to-

gether with the controller. An efficient solution should not

repeat verifying packets in the same micro-flow. If a packet

is mis-forwarded, RIGHT follows the subsequent correction

scheme to re-direct it to the correct forwarding path.

3) RIGHT the wrong, for mis-forwarded packets as well.

Once a mis-forwarded packet is detected, the controller will

1) re-direct it for correct forwarding and 2) issue new rules to

prevent packets in the same micro-flow from mis-forwarding.

Enforcing such correction scheme, RIGHT helps guarantee

processing correctness of packets forwarded both before and



after it detects corresponding forwarding errors.

Roadmap. Section II reviews causes for unreliable policy

enforcement in SDN. Section III outlines how RIGHT adapts

current SDN framework toward reliable policy enforcement.

Sections IV-V explore the RIGHT design. Finally, Section VI

concludes the paper.

II. BACKGROUND

In this section, we first walk through how SDN enforces

network management policies. We then review causes and

countermeasures of policy inconsistency between control plane

and data plane.

A. Policy Enforcement as Controller Wishes

To enforce high-level network management policies, the

centralized controller transforms them to rules understandable

to underlying switches. Policy-to-rule transformation is con-

ducted by various control applications such as routing, firewall,

and load balancing. The controller then populates rules to

corresponding switches. Since a rule specifies which network

traffic flow it matches and acts on, switches can accordingly

process flows per their matching rules. Moreover, switches

store rules using fast Ternary Content Addressable Memory

(TCAM), which should be limited in space due to being

expensive and power-hungry [14]. The controller thus usually

populates rules to switches in a reactive fashion.

Figure 1 exemplifies SDN enforcing a policy that requires

packets from the 10.10.0.0/16 subnet be forwarded along

switches sw1, sw3, and sw4. This policy enforcement process

is triggered by the arrival of the first packet pkt1 from the

10.10.0.0/16 subnet (step a). Assume that sw1 caches no rules

for processing pkt1. It needs to query the controller by a

PacketIn message with pkt1’s header encapsulated (step b).

The controller invokes the routing application to transform the

10.10.0.0/16-policy to rules corresponding to switches sw1,

sw3, and sw4 along the forwarding path (step c). A rule spec-

ifies a matching field and an action field. First, the matching

field specifies the condition that a rule’s matching packets

should satisfy. Leveraging don’t care bits (“*”) that match

both one and zero, a rule aggregates multiple exact-match

rules. For example, the rule of sw1—src=10.10.*.*—matches

packets with source IP addresses ranging from 10.10.0.0 to

10.10.255.255. Second, the action field regulates how a switch

processes a rule’s matching packets. The rule of sw1, for

example, matches packets from the 10.10.0.0/16 subnet and

forwards them to sw3. Given that a packet might match

multiple rules, a rule specifies also a priority field to ad-

dress matching ambiguity [1]. If matching multiple rules, a

packet should follow the highest-priority one. The controller

populates rules to switches by FlowMod messages (step d).

Switches sw1, sw3, and sw4 then follow the rules to forward

10.10.0.0/16-packets without querying the controller (step e).

B. Things outside Controller Gone Wild

Although rules from the controller’s viewpoint can be

guaranteed to faithfully represent policies [4], [5], [15], they

Routing App

Control Plane

Data Plane

sw1: flow table sw4: flow table

sw2: flow table

Administrator Controller

sw3: flow table

(b
).
 P
a
c
k
e
tI
n
: r

ep
or

t p
kt

1.
he

ad
er

p1; src=10.10.*.*; fwd(sw3) p3; src=10.10.*.*; fwd(sw4)

(d). FlowMod: populate rules to switches 

pkt1.src=10.10.0.0

(a). first packet of

new flow arrives

p4; src=10.10.*.*; fwd(out)

(c). policy to rules: 

Priority
Switch

sw1

sw3

sw4

Matching

src=10.10.*.*

src=10.10.*.*

src=10.10.*.*

fwd(sw3)

Action

fwd(out)

fwd(sw4)

p4

p3

p1

Rules

(e). pkt1 (e). pkt1 (e). pkt1

forward packets from

10.10.0.0/16 subnet

via sw1-sw3-sw4

policy:

Switch

Fig. 1. SDN policy enforcement.

may not accordingly take effect on switches. We reason about

various causes for rule inconsistency, some of which have

already been substantiated on commercial SDN switches.

Rule-update message loss. The controller isolates batches

of control messages using barrier commands. A switch should

complete processing all messages received before a barrier

request prior to those received after the barrier request. After

processing all prior–barrier-request messages, the switch sends

the controller a barrier reply, which ensures the controller of

successful message process. Barrier commands can indicate

message receipt only at batch level instead of desired mes-

sage level. Loss of any rule-update message will induce rule

inconsistency. A possible cause for message loss is control

channel congestion [16].

Asynchronous rule activation. It is hard for the con-

troller to synchronize rule installation on distributed switches.

Both controller scheduling and control-channel status affect

when rules reach switches. Upon arrival of rule update mes-

sages, switch scheduling decides when to install certain rules.

Scheduling of rule installation on some commercial switches is

different from the sequence instructed by rule update messages

[9]. Furthermore, switches usually send barrier replies to the

controller before rules take effect [17]. This further exacerbates

rule inconsistency between control plane and data plane,

especially in dynamic networks [11].

Rule priority violation. A recent measurement study re-

veals that switches from some vendors deviate from what the

controller intends during rule installation [9]. For example, HP

5406zl trims priorities before installing rules to hardware and

treats rules installed later as higher-priority ones. According

to a test with two rules [9], the one installed later always

wins over packets matching both rules. HP 5406zl is thus

susceptible to priority violation and rule inconsistency.

Rule installation failure. Even if all the above causes were

avoided, switches may still fail to successfully install rules on

hardware. Potential causes could be switch software bugs [7]

or even hardware errors [18].

C. Bear or Change?

Previous efforts focus mainly on testing rule inconsistency

[7], [8], [10]–[12]. The primary idea is exercise rules using

test packets. For example, assume that a switch caches only

one rule, which forwards packets from the 10.10.0.0/16 subnet

via port 1. To test whether this rule is active, we feed the

switch with a test packet with source IP address set as, for



example, 10.10.10.10. If we can catch the test packet at

port 1, we regard the 10.10.*.*/16-port1 rule as functional.

None of existing solutions generates sufficient test packets

to exhaust all possible rule inconsistency causes. ATPG [7]

tests rule activeness via rule reachability; but even if a rule

is inactive, a test packet may still undergo the same path and

ATPG misses detecting the inactive rule [8]. Against this issue,

ProboScope [8] and Monocle [11] test rule activeness at rule

level. They, however, ignore rule priority violation. In practice,

it is challenging to achieve real-time test due to the potential

nonpolynomial complexity of generating sufficient test packets

[10]. Our RuleScope [10] takes the first step toward detecting

rule priority violation; but it still faces challenges to real-time

monitoring for dynamic networks.

Finding out a rule inconsistency is, however, not the ultimate

goal of network management. Networks should process traffic

as exactly what the controller/policy wishes. We cannot just

simply notify the controller that some rules are inactive or

faulty on switches. The controller already did what it thought

right. How can it correct the wrong? Will the correction

messages encounter rule inconsistency again? What if some

traffic undergone undesirable forwarding paths prior to the

detection of rule inconsistency? What if an entire short-lived

flow has already traversed an unexpected route upon detection?

All of these concerns require way more efforts to address than

does simply detection.

Then a natural question is how to adapt SDN against rule

inconsistency. If we bear rule inconsistency causes in mind

from the beginning of configuring SDN, can we prevent rule

inconsistency? If it cannot be fully prevented, how can we

detect rule inconsistency due to various causes described in

Section II-B? For detected rule inconsistency, how can we

redirect the affected packets back to the expected paths? That

is, how to correct rule inconsistency? For those who hate to

bear SDN rule inconsistency, let us set out on the journey

toward finding a RIGHT change.

III. THE RIGHT CHANGE

In this section, we outline how RIGHT adapts SDN frame-

work toward reliable policy enforcement. We will explore its

design specifics in Section IV.

A. Goals

The ultimate goal of exploring RIGHT changes for current

SDN design is reliable policy enforcement. Through mapping

reliable policy enforcement to rule consistency across control

plane and data plane, we further break the above goal into the

following three goals.

Goal 1: Prevent or mitigate causes of rule inconsistency.

Among such causes investigated in Section II-B, message loss-

es and hardware/software faults are hard to prevent. We could

adopt certain acknowledgement schemes against message loss-

es and test/verification schemes against hardware/software

faults. For asynchronous rule activation, we could design

reasonable rule update scheduling along switches and related

acknowledgement schemes for successful rule installation.

However, none of the above schemes are trivial; some may

associate with a large overhead [17], [19]. In this paper, we

attack priority violation from the protocol design perspective.

Surprisingly, the scheme we adopt not only mitigates priority

violation but also eases revealing rule inconsistencies due to

the aforementioned other three causes.

Goal 2: Detect rule inconsistency at packet level. Since

causes for rule inconsistency are hard to eliminate, another

key step toward reliable policy enforcement is packet-level

forwarding correctness verification. The stringent requirement

of packet-level verification is because SDN enables a packet

to likely match more than one rule. Even if the expectant rule

for processing a packet is faulty, the packet might still hit

another rule. In this case, the forwarding error is stealthy and

hardly exposed to the controller. Furthermore, not all packets

will experience mis-forwarding over faulty rules [7], [8]. We

cannot simply use forwarding correctness of some packets as

the evidence of rule consistency. A desirable SDN framework

should detect rule inconsistency at packet level in real time.

Goal 3: Remedy forwarding errors induced by rule

inconsistency. Network management solicits correct pack-

et forwarding (Section II-C). SDN should integrate mis-

forwarding correction schemes for network administrators to

fully embrace its associated flexibility. We expect that such

correction schemes cannot benefit only post-remedy packets;

packets undergone mis-forwarding are also worthy of remedy.

Toward achieving these goals, RIGHT advocates the follow-

ing three changes to current SDN forwarding.

B. Changes

Change 1: Decouple rules and priorities against priority

violation. To prevent priority violation, an ideal solution

should resolve rule overlap/ambiguity in matching fields in-

stead of currently leveraged priority fields. This is because

packet headers contain what matching fields specify but not

priority values. If we could introduce a unique bound between

a packet and its expectant matching rule, it will match at most

one rule in switch flow table. Such solution needs to modify

both packet headers and rule matching fields.

The idea is highlighted here, while more details are given

in Section IV-B. The ingress switch of a packet rewrites

packer header such that the packet uniquely matches a rule on

subsequent en-route switches. To support this, the controller

needs to modify action fields for ingress-switch rules and

matching fields for en-route–switch rules. If a packet with

re-written header hits no rule on an en-route switch and is

reported to the controller, it eases revealing asynchronous rule

activation and rule installation failure.

Change 2: Verify forwarding correctness at packet level

on second-hop switches. Although the ingress switch rewrites

packet headers to decouple rules and priorities for subsequent

en-route switches, it does not alter forwarding decisions. In

other words, the ingress switch might still experience rule

inconsistency. The second-hop switch thus has to assure its

subsequent switches that what it sticks to is correct. That is,

the second-hop switch should verify whether incoming packets



from the ingress switch follow expectant rules and, if not,

trigger the controller for correction.

It is, however, quite challenging for the second-hop switch

to achieve accurate yet efficient packet-level verification. If we

simply let the second-hop switch direct every incoming packet

to the controller for verification, the overhead would be too

high. Section IV-C will explore efficient solutions, some of

which may sacrifice verification accuracy with a controllable,

slight probability.

Change 3: How to RIGHT the wrong? Once a mis-

forwarded packet is detected, we should get it back on track. A

correction scheme may not simply update corresponding rules

on the ingress switch; rule update might cause rule inconsis-

tency again. On the other hand, it is neither practical to let

the controller direct mis-forwarded packets to their expectant

second-hop switches due to overhead concern. Section IV-D

will explore feasible schemes.

IV. DESIGN

In this section, we explore possible RIGHT design choices

along with various challenges. For simplicity, we temporarily

base our discussions on a network with only one ingress switch

and one egress switch. (We will generalize RIGHT design

toward more complex networks with multi-role switches in

Section IV-E.) As later discussions will show, RIGHT design

may raise quite a few challenges. A comprehensive design

certainly solicits more research/practice efforts.

A. RIGHT at First Glance

Figure 2 instantiates our RIGHT framework for reliable

policy enforcement. Based on current SDN framework in

Figure 1, RIGHT incorporates three adaptations. First, RIGHT

retrofits packets and rules such that each packet matches at

most one rule on each en-route switch (step c). This confines

mis-forwarding to only the ingress switch. Second, the second-

hop switch thus needs to corporate with the controller to

verify whether incoming packets from the ingress switch

follow expectant rules (step f). Third, in case a packet is

mis-forwarded, the controller should re-direct it to the correct

forwarding path (step g′).

One may already perceive certain challenges of implement-

ing RIGHT as in Figure 2. For example, should the second-

hop switch direct every packet to the controller for verification

(step f)? Should the controller be responsible for directing

every mis-forwarded packet to the expectant switch (step g′)?

We next present RIGHT design specifics as well as how we

try to address corresponding challenges.

B. Retrofit Packets and Rules

RIGHT retrofits packets and rules to eliminate rule pri-

ority violation and ease revealing rule inactivation on en-

route switches. Packet retrofitting rewrites packet headers via

tagging on the ingress switch. Tagging can exploit certain

unused bits in a packet header [20]. Specifically, we instrument

each ingress-switch rule with an additional tagging operation

in the action field. Tags should be unique across rules on the

 !"#$!%&'%(")

*(#(&'%(")

+,- +,.

+,/

 !"#$!%%)$

+,0

12
34
& 
!
"
#
$
%&
'
5

$)
6
!
$#
&6
7
#-
48
)(
9
)$

67#-4+$:;-<4-<4<4<

1(34&=>$+#&6(:7)#&!=

"),&=%!,&($$>?)+

1:34&6!%>:@&#!&1$)#$!=>##)93&$A%)+5&=,9&-<4-<4<4<B-CD67#+&?>(&+,-D+,0D+,.&

'$>!$>#@
E,>#:8

+,-

+,0

+,.

F(#:8>"G

+$:;-<4-<4H4H

#(GI&?)$>=>)9;-

#(GI&?)$>=>)9;-

#(GI&?)$>=>)9;<I&=,91+,03&

J:#>!"

A"#(GI&?)$>=>)9;<I&=,91!A#3

=,91+,.3

"A%%

"A%%

6-

KA%)+

1)34&67#- 1834&67#- 1>34&67#-

"A%%

?)$>=>)9;< #!&:!"#$!%%)$

1=
34
&?
)$
>=
>:
(#
>!
"
&$
)L
A
)+
#

1G
34&6

7
#-
4?
)$>=>)9

;
-

(h
')

. 
p

kt
x

E,>#:8

1934&()*+,*-5&6!6A%(#)&$)#$!=>##)9&$A%)+&#!&+,>#:8)+&

(e'). pktx (i'). pktx

Fig. 2. (Basic version of) RIGHT policy enforcement. (Steps e′, f, g′, h′,
and i′ instantiate mis-forwarding detection and correction.)

ingress switch. Then en-route switches match packets using

only tags, leading to no matching ambiguity. Moreover, if an

en-route–switch rule is inactive, the en-route switch will direct

its matching packet to the controller because the inactive rule

is the only one to process the packet. This eases revealing

rule inactivation on en-route switches in comparison with

conventional SDN where the packet might hit another rule

and leave rule inactivation unnoticed. Finally, the egress switch

needs to untag packets before steering them out of the network.

Handling drop rules on the ingress switch is worthy of

emphasis here. If packets are dropped on the ingress switch,

we have no chance to verify whether the ingress switch treats

them right. Inspired by ProboScope [8], we defer the drop

action to a second-hop switch. Specifically, the controller splits

a drop rule on the ingress switch to two rules. One is for the

ingress switch; it tags supposed-to-drop packets and forwards

them to a second-hop switch. The other is for the second-hop

switch; it drops the packets only if the controller verifies the

processing correctness of the ingress switch. For simplicity,

we omit drop rules in what follows.

C. Verify Forwarding Correctness

Since the ingress switch still uses overlapping rules, it is

critical for the second-hop switch to verify the forwarding

correctness of incoming packets before delivering them to the

next hop. The verification should involve the controller, which

is aware of all packets’ expectant forwarding paths. Figure 2

illustrates a straightforward yet expensive verification scheme.

It requires that the second-hop switch direct every packet to

the controller for verification (step f). To this end, the ingress

switch specifies each packet a verified bit while tagging. It

initially zeros the verified bit to indicate that a packet is not

verified. Then the second-hop switch accordingly caches a

rule for forwarding verified=0-packets to the controller. Using

a packet’s tag, the controller can deduce which rule on the

ingress switch processes the packet and therefore verify its

forwarding correctness. After verification, the controller sets

a packet’s verified bit as one and directs it back to data plane

(step g or g′). Upon receiving verified=1-packets, switches no

longer need to query the controller for verification; they simply

process them using rules with matching tags.

It is challenging to achieve efficient packet-level verification

without touching SDN integrity. While actively pursuing a

comprehensive solution, we next discuss three possible effi-

ciency enhancement techniques.



Omit verifying packets processed by “isolated” rules.

The verification process concerns with whether a packet fol-

lows the expectant rule among multiple overlapping ones. If an

isolated rule on the ingress switch does not overlap with the

others, packets it processes may not experience forwarding

errors. Such packets therefore need no verification on the

second-hop switch. In light of this, a rule overlapping with no

other rule on the ingress switch can directly set its matching

packets’ verified bit as one. This, however, is not a radical

efficient solution as SDN benefits from overlapping rules

against TCAM space constraint.

Introduce exact-match rules to track verified packets.

After verifying the forwarding correctness of a packet, packets

in the same microflow need no further verification. We thus

can construct an exact-match rule with extracting certain fields

from the verified packet’s header as the matching field, that

is, (tag, verified=0, other header fields used for matching

on the ingress switch). For the next-hop switch to omit

verifying corresponding packets, the newly constructed exact-

match rule’s action should be (verified=1, forward to next hop)

instead of directing packets to the controller. We then could

introduce an exact-match lookup table to accommodate the

preceding exact-match rules [16]. This scheme might modify

the conventional SDN switch design, requiring multi-table

processing [21]. That is, one for the above exact-match rules

and one for the conventional rules. A packet first goes through

the former table to check whether its associated micro-flow is

verified and only if no will the packet enter the latter table.

Leverage Bloom filters to compress exact-match rules.

When exact-match rules for verified microflows cost too much

space, we could hash them into a Bloom filter toward space

efficiency. The Bloom filter can be embedded in a small,

fast memory like SRAM [22]. Upon arrival at the second-

hop switch, a packet is first checked against the Bloom

filter. If it is “in”, it need not be directed to the controller

for verification. Instead, the second-hop switch first changes

the packet’s verified bit to one and then processes it using

TCAM rules. This scheme requires more modifications to SDN

switches. Furthermore, the intrinsic false positives of Bloom

filter technique might leave mis-forwarded packets undetected

(with a controllable, slight probability).

D. Remedy Mis-forwarding

To guarantee forwarding correctness, the controller needs

to direct any detected mis-forwarded packet to its expectant

forwarding path. Figure 2 shows a basic scheme where the

controller directly forwards a mis-forwarded packet pktx to

the correct second-hop switch sw2 (step g′). This scheme

works well for a small amount of mis-forwarded packets. But

when mis-forwarded packets are of a large scale, directing all

of them to the controller is impractical. Large-scale packets

will, for example, fatigue control channel bandwidth and incur

forwarding delay.

We can again introduce exact-match rules to prevent most

mis-forwarded packets from rushing to the controller. For a

verified mis-forwarded packet, the corresponding exact-match

rule has matching field as (tag, verified=0, other header fields

used for matching on the ingress switch) and action field

as (verified=1, forward to the correct second-hop switch).

Such rule requires a link from the wrongly chosen second-

hop switch to the correct one. Now a subsequent packet will

traverse at most three flow/lookup tables on the second-hop

switch—an exact-match lookup table matching verified mis-

forwarded microflows, an exact-match lookup table matching

verified correctly forwarded microflows, and a TCAM flow

table matching other flows.

E. RIGHT at Second Sight: Multi-role Switch

We now consider adapting RIGHT to more complex net-

works with multi-role switches. A multi-role switch is on

different hops along multiple forwarding paths. Take switch

sw3 in Figure 2 for example. It is now on the second hop

of the illustrated forwarding path sw1-sw3-sw4. It can also

serve as an ingress switch if it connects to some end-hosts.

Moreover, it may become a (n ≥ 3)th-hop or egress switch

under certain network topologies. In the most complex case,

a switch could be playing the above three roles at the same

time. Although this sounds complicated, we observe that it in-

troduces no particular changes to the explored RIGHT design.

The controller follows the same way as in Sections IV-B-IV-D

to configure each switch along a forwarding path. In particular,

ingress and (n ≥ 3)th-hop switches require only current

SDN switches whereas second-hop switches need cache exact-

match rules and support multi-table processing. We therefore

suggest designating fewer second-hop switches during network

topology planning such that the network can benefit from

RIGHT at minimum cost.

V. DISCUSSION

A. Rule Update Cost

Current SDN uses priorities to reconcile overlapping rules.

Since packet headers contain no such priority information,

TCAM rules match against only packet headers while using

memory location to emulate priority. Specifically, the highest-

priority rule has the highest memory location in the TCAM

[13]. To process a packet, TCAM matches it against all rules

in parallel. Among all matched rules, the one with the highest

memory location dominates the forwarding decision. Handling

priority in such way, a rule update may force relocating some

other rules. Our recent measurements show that relocating

rules leads to heavy rule update overhead on TCAM. Although

many efforts have been made to optimize rule update at the

controller end [23], few delve into the switch TCAM side.

Introducing unique tags across rules promises not only

fewer forwarding errors but also lower rule update cost. After

retrofitting packets and rules (Section IV-B), RIGHT enables

non-overlapping rules within each en-route switch. It thus

needs no priority to avoid matching ambiguity therein. When

the controller updates a new rule to a switch, the switch can

place the rule anywhere empty on TCAM, minimizing rule

update cost.



B. Flow Table Size

For a tagged packet, RIGHT uses only the tag as its

corresponding rule’s matching field. A tag is much shorter than

currently used tuples comprising several packet header fields

[1]. RIGHT thus can store more tag-rules than traditional rules

on a switch. This promises a larger flow table, albeit on the

same TCAM, and finer-grained network management policies

[24].

C. Forwarding Delay

Verifying forwarding correctness at the second-hop switch

induces forwarding delay (Section IV-C). In comparison with

unverified forwarding, some packets may match through mul-

tiple flow tables or traverse an extra round-trip between the

controller and switch.

First, such forwarding delay can be somewhat compensated

by simplified management of retrofitted rules (Section V-A).

When a switch installs only rules with unique tags, it no

longer needs the tedious rule relocation to emulate rule priority

upon rule update. Corresponding packets then experience less

buffering time. This helps decrease average forwarding delay,

especially for mice flows.

Second, the benefit of reliable forwarding may outweigh

the downside of forwarding delay. The induced latency is

necessary for intervening in SDN forwarding toward error de-

tection and correction. Furthermore, it works well for dynamic

networks with frequent rule updates. Normally, it is more

challenging to test forwarding behavior of dynamic networks

[11]. And no matter how fast a test method is, it cannot benefit

mis-forwarded packets prior to error detection.

D. Robustness

As with any SDN forwarding investigation methods [7],

[8], [10], [11], [25], we find it a bit paradoxical to ensure

RIGHT’s robustness against packet loss. On the one hand,

packet loss is one of the causes for forwarding errors. On

the other hand, RIGHT relies on reliable message delivery

to enforce reliable forwarding. Without mounting additional

acknowledgement schemes, RIGHT’s forwarding reliability is

also susceptible to packet loss. Instead of making every in-

teraction between the controller and switches reliable, RIGHT

requires reliable communication between the controller and

second-hop switches. Many choices are in literature but they

are beyond the scope of this short paper.

VI. CONCLUSION

We have presented RIGHT, a new SDN forwarding frame-

work toward reliable policy enforcement. We first reason

about the root causes for unreliable forwarding in current

SDN. RIGHT then incorporates lightweight modifications to

current SDN forwarding to mitigate, detect, and remedy mis-

forwarding. Although still facing various design challenges,

we are actively embarking on RIGHT adventure through em-

ulation and implementation. We expect that RIGHT promise

correct per-packet processing in real time for SDN.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation of China under Grant No. 61402404. We would

also like to sincerely thank IEEE SDDCS 2016 chairs and

reviewers for their helpful feedback.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al., “Com-
posing software defined networks,” in USENIX NSDI, 2013, pp. 1–13.

[3] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks.” in USENIX NSDI, 2012, pp. 113–126.

[4] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis.” in USENIX NSDI, 2013, pp. 99–111.

[5] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in USENIX NSDI, 2013.

[6] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software-defined network control layer,” in NDSS, 2015.

[7] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in ACM CoNEXT, 2012, pp. 241–252.

[8] M. Kuzniar, P. Peresini, and D. Kostic, “Proboscope: Data plane probe
packet generation,” Tech. Rep., 2014.

[9] ——, “What you need to know about sdn flow tables,” in PAM, 2015.

[10] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” in IEEE

INFOCOM, 2016.

[11] P. Peresini, M. Kuzniar, and D. Kostic, “Monocle: Dynamic, fine-grained
data plane monitoring,” in ACM CoNEXT, 2015.

[12] I. Pelle, T. Lévai, F. Németh, and A. Gulyás, “One tool to rule them all:
a modular troubleshooting framework for sdn (and other) networks,” in
ACM SOSR, 2015.

[13] D. Shah and P. Gupta, “Fast updating algorithms for tcams,” IEEE Micro,
no. 1, pp. 36–47, 2001.

[14] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” in ACM SIGCOMM, 2010, pp. 351–362.

[15] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
customizable consistency properties in software-defined networks,” in
USENIX NSDI, 2015, pp. 73–85.

[16] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: scaling flow management for high-performance
networks,” in ACM SIGCOMM, 2011, pp. 254–265.

[17] M. Kuzniar, P. Peresini, and D. Kostić, “Providing reliable fib update
acknowledgments in sdn,” in ACM CoNEXT, 2014, pp. 415–422.

[18] A. Bremler-Barr, D. Hay, D. Hendler, and R. M. Roth, “Peds: a parallel
error detection scheme for tcam devices,” IEEE/ACM Transactions on

Networking, vol. 18, no. 5, pp. 1665–1675, 2010.

[19] M. Dobrescu and K. Argyraki, “Software dataplane verification,” in
USENIX NSDI, 2014, pp. 101–114.

[20] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in USENIX NSDI, 2014.

[21] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The flowadapter:
Enable flexible multi-table processing on legacy hardware,” in ACM

HotSDN, 2013, pp. 85–90.

[22] M. Yu, A. Fabrikant, and J. Rexford, “Buffalo: Bloom filter forwarding
architecture for large organizations,” in ACM CoNEXT, 2009.

[23] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in USENIX NSDI, 2015.

[24] A. S. Iyer, V. Mann, and N. R. Samineni, “Switchreduce: Reducing
switch state and controller involvement in openflow networks,” in IFIP

Networking, 2013, pp. 1–9.

[25] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in USENIX NSDI, 2014, pp. 71–85.


