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Abstract—The rapid growth of cryptojacking and the increase
in regulatory bans on cryptomining have prompted organizations
to enhance detection ability within their networks. Traditional
methods, including rule-based detection and deep packet inspec-
tion, fall short in timely and comprehensively identifying new and
encrypted mining threats. In contrast, learning-based techniques
show promise by identifying content-agnostic traffic patterns,
adapting to a wide range of cryptomining configurations. How-
ever, existing learning-based systems often lack scalability in
real-world detection, primarily due to challenges with unlabeled,
imbalanced, and high-speed traffic inputs. To address these
issues, we introduce MineShark, a system that identifies robust
patterns of mining traffic to distinguish between vast quantities
of benign traffic and automates the confirmation of model
outcomes through active probing to prevent an overload of model
alarms. As model inference labels are progressively confirmed,
MineShark conducts self-improving updates to enhance model
accuracy. MineShark is capable of line-rate detection at various
traffic volume scales with the allocation of different amounts
of CPU and GPU resources. In a 10 Gbps campus network
deployment lasting ten months, MineShark detected cryptomin-
ing connections toward 105 mining pools ahead of concurrently
deployed commercial systems, 17.6% of which were encrypted.
It automatically filtered over 99.3% of false alarms and achieved
an average packet processing throughput of 1.3 Mpps, meeting
the line-rate demands of a 10 Gbps network, with a negligible
loss rate of 0.2%. We publicize MineShark for broader use.

I. INTRODUCTION

Cryptojacking has seen rapid growth over the last few
years, accounting for one-sixth of all malware incidents by
the end of 2023 [1]. This trend is particularly concerning as
cryptojacking malware has compromised critical infrastructure,
leading to operational slowdowns, disruptions, and significant
public safety risks [2]. Moreover, the legality of cryptomining
is shifting. The governments of New York [3] and China [4],
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along with various organizations [5] are implementing bans to
protect public resources and the environment. These changes
highlight the critical need for timely and comprehensive de-
tection of unauthorized cryptomining activities.

Among existing detection approaches [6], [7], [8], [9],
[10], traffic detection [11] remains the primary method for
most organizations to combat cryptomining threats. It provides
comprehensive coverage across organizational networks by
monitoring network entry and exit points. Specifically, the
prevalence of pool mining activities [12], [13], [14], [15], [6],
[16] presents intrusion detection systems (IDSes) with oppor-
tunities to inspect communications between internal mining
devices and external mining pools, which are important signs
of compromise.

Traditional IDSes typically rely on rule-based policies [17]
or payload inspection [18]. However, rule-based approaches,
relying on detection rules crafted by experts post-virus dis-
covery, are not timely and only address known threats [19].
Similarly, payload inspection lacks scalability due to compu-
tational overhead and is ineffective against encrypted mining
traffic [20]. In contrast, content-agnostic, learning-based detec-
tion offers flexibility and effectiveness in identifying emerging
threats, even those using encryption [21], [22].

Although existing learning-based approaches to crypto-
mining traffic detection show promise on balanced labeled
dataset [23], [24], [16], [14], their practical usage at scale
faces significant challenges. In gateways where IDSes operate,
the traffic is unlabeled and imbalanced between mining and
non-mining classes. Furthermore, the relatively low volume of
mining traffic in comparison to the overall input necessitates
efficient detection algorithms. Moreover, the issues of imbal-
ance and efficiency intensify as the scale increases. Without
addressing the problems of lacking ground truth labels, class
imbalance, and the need for line-rate processing, it remains
uncertain whether learning methods can truly enhance IDSes
in detecting a broader range of cryptomining threats.

To address these challenges, we propose a novel workflow
that automates verification of model outcomes and establishes
a feedback loop for continuous accuracy improvement, mean-
while ensuring efficiency. As depicted in Figure 1, incoming
traffic is first processed by an inference pipeline to generate
predictive labels. Flows labeled as mining are considered suspi-
cious and subsequently evaluated by an automatic confirmation
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Fig. 1: MineShark employs an end-to-end learning-based de-
tection workflow to resolve unlabeled, imbalanced, and high-
speed traffic processing requirements.

module. Using model-independent features, the confirmation
module distinguishes between false positives and actual mining
activities and also provides reliable labeled data for model
refinement. We establish two queues to monitor the processing
speed: QInfer for model inference and QSuspicious for suspicious-
mining confirmation. Guaranteeing no loss in either queue en-
sures 100% traffic detection coverage. This workflow prepares
the learning detection approach for deployment in real-world
gateways. We refer to the workflow as a detection pipeline in
the remainder of the paper.

Challenges in implementing a detection pipeline include:
First, addressing imbalanced traffic input necessitates the se-
lection of robust features. With features capturing key mining
characteristics, the model can generalize to new mining sam-
ples and remain resilient to variations of legitimate traffic and
noise in an online environment. Existing studies, however, fail
to achieve robust detection due to their utilization of unstable
features, as discussed in Section V-C.

Second, managing gateway traffic input requires line-rate
inference and automatic confirmation. Inadequate speed could
result in the discarding of undetected or unconfirmed flows at
the tail of QInfer or QSuspicious, missing opportunities to identify
potential mining flows. Regrettably, existing studies primarily
evaluate efficiency in offline settings, and their dependence on
manual confirmation cannot ensure no loss in QSuspicious, as
detailed in Section VII-C4.

Third, unlabeled traffic input necessitates reliable confir-
mation. Learning methods are often plagued by a high rate
of false alarms. This problem is exacerbated by high-volume
and diverse gateway traffic. Providing confident detection
results backed by convincing evidence is crucial to reducing
operational overhead. Unfortunately, current research lacks in
the design of a confirmation mechanism.

Finally, detection in highly imbalanced environments re-
quires continuous model improvement with high-quality train-
ing data. To effectively refine the model’s decision boundary,
post-deployment data collection should be tailored to overcome
biases toward the normal traffic class and the underrepresen-
tation of the mining traffic class. However, current approaches
depend on manual data collection, which is unsustainable and
lacks precision. Additionally, the use of artificially balanced
datasets may impair model’s generalization ability.

We present MineShark, an online self-improving learning-
based cryptomining traffic detection system. Our contributions
are summarized as follows:

Robust cryptomining detection (Section V). Through com-
prehensive mining traffic collection, we find that the repetitive
patterns in temporal mining message sequences remain consis-
tent across varying configurations. This observation motivates

us to adopt algorithms that identify the regularity of message
exchange over sequences. In contrast, previous classifiers,
depending on coarse-grained flow-level statistical features or
timing features without considering the message order, exhibit
poor generalization and are vulnerable to perturbations.

Line-rate inference (Section VI-B). MineShark achieves
line-rate traffic detection via a GPU configurable in-memory
pipeline, which is optimized for parallel computation, efficient
memory usage, and compliance with storage limitations. It
allows integration of different models and adaptable resource
allocation to manage varying traffic volumes.

Reliable automatic confirmation (Section VI-C). MineShark
constructs correlation graphs for suspicious connections in
QSuspicious, enabling multifaceted analysis while preserving
efficiency. It first filters out apparent false alarms, then exploits
graph-level features to rank the remaining addresses. Based
on the ranking, it conducts monitoring and active probing to
ensure reliable confirmation. Moreover, the correlation graph
helps profile the behaviors of mining malware, facilitating the
detection of encrypted cryptomining, and aiding in the devel-
opment of lightweight defenses against potential infections.

Self-improving model (Section VI-D). MineShark supports
an iterative workflow to improve model accuracy after de-
ployment. Beginning with an initial model, it periodically
learns from labeled data derived from confirmation module,
including misclassified benign and mining traffic, to refine the
model’s decision boundary. Over time, this automated process
significantly improves model accuracy in detecting mining
flows in the target environment.

Real-world deployment (Section VII). We deployed Mine-
Shark 1 to monitor our 10 Gbps campus gateway traffic over
ten months (ethical concerns addressed in Section IV). With
five CPU cores and one GPU accelerator, MineShark met
the line-rate demands with a negligible loss rate of 0.2%.
Through automatically removing over 99.3% of false alarms, it
identified cryptomining activities associated with 105 mining
pools before they were blocked by the concurrently deployed
commercial IDSes. In addition, 71.6% of discovered mining
addresses are prior to their disclosure by VirusTotal [25]. To
the best of our knowledge, we conduct the first large-scale
deployment of a learning-based cryptomining traffic detection
system. Our work demonstrates the effectiveness of learning
methods in augmenting real-world IDSes.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the basics of cryptomin-
ing traffic and learning-based detection approaches. Next, we
present MineShark’s deployment as a typical use case and
detail the key components in its detection pipeline. Finally,
we introduce the detection ratio metric to assess detection
effectiveness in the absence of input traffic labels.

A. Cryptomining Traffic and Learning-based Detection

In pool mining scenarios, a deployed or hijacked mining
device communicates with pool servers using mining proto-
cols. Stratum [26], the de facto protocol used by major mining

1https://doi.org/10.5281/zenodo.13624057
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System Feature and Detection Robustness Inference
Throughput

Cryptomining
Confirmation

Training
Data Collection

CJ-Sniffer [23] Unique inter-packet delay distribution of inbonud traffic, lack accuracy and robustness. 10 Gbps Manual Manual
MineHunter [14] Timing correlation with block generation in the cryptocurrency network, lack accuracy and robustness. 2.8 Gbps Manual Manual

IoT-Light [24] Common statistical features of size and timing on a group of packets, lack robustness. Not clear Manual Manual
Crypto-Aegis [16] Common statistical features of size and timing on a group of packets, lack robustness. Not clear Manual Manual

MineShark Repetitive patterns in temporal sequences of packets characterized by unique sizes and timings, accurate and robust. 92 Gbps Automatic Automatic
post-deployment

TABLE I: Comparison with the state-of-the-art cryptomining traffic detection systems.
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Fig. 2: Cryptomining detection at network gateway.

pools [27], is a JSON-RPC-based TCP protocol that transmits
data either in plain text or over TLS encryption. A mining con-
nection typically begins with a service subscription message
initiated by the mining device. Following this, pool servers
continuously assign computational jobs to the registered miner,
who performs the calculations locally and submits the results
to the pool server. The pool server acknowledges confirmed
results, and the more results are confirmed, the higher the
miner’s profit. Consequently, mining connections can last for a
long period, during which the mining traffic can be inspected
by gateway IDSes.

To detect unknown or encrypted mining services, content-
agnostic learning-based detection methods are being explored,
which leverage distinct characteristics in mining traffic, such
as unique packet sizes and message intervals, to identify
new threats based on feature similarities. Notably, the learned
features remain robust against common evasion techniques,
such as traffic encryption or changes in mining pool addresses.

MineShark falls into the category of learning-based de-
tection systems and follows standard IDS deployment prac-
tices [28]. As depicted in Figure 2, MineShark can be deployed
at any network entry or exit point where traffic can be mirrored
for analysis (➊). It employs a two-stage detection strategy:
first, it performs fast filtration using a trained model at line
rate to identify potential cryptomining activities (➋). Next, it
confirms mining activities by eliminating false alarms through
correlation techniques, followed by active probing or payload
inspection to verify mining services. On identifying mining
pool addresses, MineShark notifies network administrators and
provides comprehensive visiting logs (➌), enabling them to
update denylists and locate internal mining devices (➍).

B. Formulation of Detection Pipeline

We adopt the standard online detection framework to
develop MineShark [29], [21]. The detection pipeline processes
raw traffic input and reports detected mining addresses.

Traffic input consists of a continuous stream of packets
P1, ..., Pi passing through the gateway. Each packet Pi be-
longs to a unique bidirectional flow Fid, identified by the
five-tuple: {srcip,dstip,srcport,dstport,proto}. The
srcip and dstip denote the source and destination addresses,

respectively. When a NAT device is involved, as illustrated in
Figure 2, the pair {srcip,srcport} can be reverse-mapped
to pinpoint the internal mining device.

ML inference pipeline includes flow tracking, feature ex-
traction, and model inference. Flow tracking assigns the i-th
packet Pi to its belonged flow Fid. It extracts features from
Pi to update the feature set of Fid within the current detection
window. A detection window, of size ∆S, comprises a packet
sub-sequence Pm, ..., Pn in Fid, satisfying n−m+ 1 = ∆S.
The pipeline generates a new feature vector for every ∆S
packets and adds it to QInfer (as depicted in Figure 1), then
moves to the next window. This approach efficiently reuses
memory allocated per flow across different windows. In cases
where a time sliding window is used, a new feature vector is
generated every ∆T time units instead of per ∆S packets.

The model retrieves feature vectors from QInfer to compute
similarity scores. Each score is compared against a decision
threshold to assign a binary label. Thus, the similarity of flow
Fid to cryptomining is represented by a list of labels and
scores. Flows labeled as mining are then moved to QSuspicious
for confirmation. A flow is considered complete if the time
elapsed since the last packet’s arrival surpasses a predefined
threshold. This threshold is set by profiling the maximum
intervals between mining packets and adjusted during deploy-
ment to prevent system overload. To optimize memory usage,
expired flows are removed to make space for incoming ones.

Mining confirmation reports confirmed mining addresses and
ranks unconfirmed suspicious addresses. It dequeues suspi-
cious flows from QSuspicious and performs model-independent
analysis. Flows are categorized as mining, suspicious, or false
alarms based on their dstip. Mining flows require immediate
action. Suspicious flows, while not conclusively dangerous,
need further investigation. False alarms, indicating minimal
risk, serve as valuable feedback for enhancing the model.

Detection Ratio =
#ConfirmedMining

#FlowsMining

=
#ConfirmedMining

#ModelInfer
×

#ModelInfer

#FlowsInput
×

#FlowsInput

#FlowsMining

(1)

Conventional metrics like precision and recall are unsuit-
able for evaluation when input traffic lacks ground truth labels.
Hence, we propose to assess system effectiveness by detection
ratio, as defined in Equation 1. Intuitively, the ratio represents
the fraction of identified mining flows (#ConfirmedMining) relative
to the total mining flows present (#FlowsMining). It further factors
in three elements: First, the accuracy of the detection pipeline,
reflected by the ratio of confirmed mining flows to model-
inferred flows (#ModelInfer). This factor may diminish due to
misprediction of mining flows (low recall), confirmation errors,
or insufficient confirmation speed. Second, the efficiency of
inference, indicated by the ratio of inferred flows to all the
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system input flows (#FlowsInput), which is directly impacted by
the model’s computational complexity. Third, the prevalence
of mining traffic in the monitored environment, represented by
the proportion of mining flows within the total input flows.

Equation 1 highlights the importance of selecting models
with high inference throughput and high recall when deploying
MineShark. This allows examining the maximum number of
input flows while effectively filtering out most mining flows,
thereby improving the detection ratio.

C. Related Work

Cryptomining(jacking) Detection. We compare MineShark
with the state-of-the-art learning-based cryptomining traffic
detection systems in Table I. We detail the robustness compar-
ison in Section V-C. Regarding inference efficiency, despite
some work estimates the throughput in an offline setting, a
notable gap in prior work is the lack of an online detec-
tion pipeline, complicating direct runtime comparisons. For
instance, systems without in-memory processing necessitate
offline traffic storage. However, utilizing 1 TB storage can
only capture 13 minutes of traffic on a 10 Gbps link, with no
assurance of containing mining flows. Additionally, as reported
by [24], predicting a single feature vector takes 100 ms by the
algorithm. Given our measurements, as illustrated in Figure 8c,
their settings could generate up to 50,000 feature vectors per
second online, rendering the algorithm impractical to execute
with limited resources, such as on a single server. Furthermore,
MineShark is the only system that automates confirmation and
training data collection for model refinement post-deployment,
meeting the pragmatic demands of production environments.

Several detection tools are designed for specific crypto-
jacking scenarios without conducting traffic inspection. For
instance, Li et al.[6] focus on detecting cryptojacking on
Continuous Integration platforms by scanning configuration
files, a method not well-suited for broad organizational use.
MineSweeper[8] and CMTracker [9] target browser-based
cryptojacking, leaving server-oriented attacks unaddressed.
Zhang et al. [27] investigate stealthy mining pools, which helps
enhance IDSes’ denylists, and in turn benefits from IDSes’
local detection results to refine probe packet construction
and identify scanning ports. In contrast, MineShark provides
a versatile solution for diverse organizational gateways and
cryptojacking threats, thus complementing the capabilities of
existing tools.

ML-based Anomaly Detection. Although existing ML-based
detection tools can develop models on given datasets through
a general workflow [30], the real-world applicability of these
models is not assured [31], [32]. Generalizability problems
can arise due to inductive biases within the training data,
particularly when there is a significant class imbalance. Mi-
neShark bridges this gap with three-tiered efforts: First, it
identifies robust features derived from analyzing mining traffic,
enhancing the generalization ability from the algorithm side.
Second, it distinguishes true mining from false alarms through
active probing, tackling the issue of uninterpretable model
outcomes. Third, it enriches training data with labeled data
from the second step, incrementally improving model accuracy
from the data perspective. This iterative workflow extends
conventional ML development cycle and provides dependable

detection results. Specifically, MineShark approaches the de-
tection task as a binary traffic classification problem, using su-
pervised learning algorithms that are widely-adopted in traffic
classification [33], [34], [35], [36]. In contrast, unsupervised
learning is typically used for detecting unforeseen threats, such
as zero-day attacks [37], [21], [22].

Line-rate detection system. Existing efforts in building line-
rate detection systems cannot directly apply to MineShark’s
detection pipeline, primarily due to the dependence on spe-
cialized hardware and limited support for ML models. For
example, NetBeacon [38], FlowLens [39], and HorusEye [40]
achieve line-rate processing through the use of programmable
switches and N3IC [41] relies on SmartNICs. However, hard-
ware programming is challenging [42], and none of them
can execute deep learning models. While Retina [29] presents
an efficient software framework to filter traffic at line rate
for subsequent analysis, it demands substantial co-design of
application logic. In contrast, MineShark implements an end-
to-end detection pipeline that flexibly supports ML models and
is compatible with GPUs for acceleration.

III. THREAT MODEL

MineShark is deployed at network gateways to monitor
cryptomining incidents. Administrators can determine whether
the mining activity originates from a regular user or an infras-
tructure device based on the associated internal IP address.
Infections on infrastructure devices pose high risks and are
blocked immediately. The handling of mining activities by
users can vary according to organizational policies.

The operator performs initial data collection and trains a
model to integrate into MineShark’s detection pipeline. Open-
source labeled datasets of mining and non-mining traffic are
available for download [24], [23]. Additionally, the operator
can collect and label real-world mining and non-mining traffic
by connecting varying mining devices to mining pools and
sampling benign flows within the operational environment.

Once deployed, MineShark monitors a mirrored copy of
gateway traffic, identifying mining flows without affecting the
actual traffic. It reports confirmed mining addresses and ranks
unconfirmed suspicious addresses to the operator. MineShark
independently operates alongside other IDSes within the same
network. Different IDSes concurrently detect mining addresses
and contribute to a shared denylist, preventing internal access
to these blocked addresses. When MineShark is not authorized
to update the denylist, the time from its initial detection of a
specific mining address to the cessation of any new connections
to that address serves as a measure of the delay in addressing
mining threats that other IDSes have overlooked.

The attackers can be cryptojacking malware or malicious
insiders. They have regular user access to the internal network.
They can connect internal (compromised) devices to external
mining pools, with the mining traffic being either encrypted or
in plain text. To maximize profits, attackers continue their cryp-
tomining activities until detection leads to a ban. Voluntarily
terminating a mining connection is uncommon unless it serves
as a strategy to avoid detection. Upon experiencing repeated
connection failures, an attacker might deduce that a mining
address is blocked and consequently switch to alternative,
accessible mining addresses. At present, MineShark does not
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ensure protection against adversarial attacks aimed at exploit-
ing the model’s characteristics. Potential countermeasures are
discussed in Section VIII.

IV. ETHICS

Similar to commercial IDSes, MineShark needs to process
network raw traffic, which contains sensitive user information.
We describe detailed steps taken to mitigate the risks.

MineShark is deployed at our campus gateway. Our re-
search plan was thoroughly reviewed and approved by the
Information Technology Center (ITC) and the Institutional
Review Board. The ITC manages the setup and maintenance
of the monitoring server, and traffic mirroring ensures that
user services remain unaffected by any malfunction in Mi-
neShark. The mirrored traffic is pre-processed to remove
any authentication-related personal information, ensuring the
confidentiality of sensitive data. Since authentication occurs
via internal campus servers and MineShark monitors only
traffic directed to the Internet, these two traffic types are
topological distinct, making them easy to separate during
mirrored traffic configuration. Additionally, dynamic network
address translation anonymizes the input traffic to the IDSes.
As we only observe public addresses post-translation and are
not privy to the reverse mapping rules, the possibility of
tracking individual users is mitigated.

MineShark operates locally and ensures that sensitive data
never leaves the server. The model, trained on real traffic,
focuses solely on non-payload information such as timestamps
and packet sizes. During collection of training data, only the
TCP five-tuple, packet timestamps, and sizes are recorded. For
live traffic analysis, MineShark’s in-memory pipeline extracts
only timing and size information. In addition, as new packets
arrive, old packet data are immediately replaced in the memory
buffer, preventing any data persistence in storage.

For suspicious flows requiring further confirmation, we
employ correlation techniques to filter out false alarms, relying
only on flow-level features like duration, occurrence time, and
model score. When false alarms or mining addresses are identi-
fied, we record the extracted features of packet timestamps and
sizes of a few new flow instances (five in our settings) to aid
in refining the model. Such data are automatically collected,
analyzed, and deleted after a set period (six weeks in our case).

The only step involving payload inspection in MineShark
is the automated keyword scanning of select packets (twenty at
most) from suspicious flows, aimed at swiftly confirming plain-
text cryptomining activities. This process generates a match
result, with human inspection limited to payloads of matched
flows only. For matched flows, a set number of raw packets
(one hundred in our case) are stored for further analysis. This
adheres to the ITC security team’s requirement for manual
confirmation of detection results by their experts.

To confirm mining addresses, we use non-invasive active
probing that emulates real mining software by requesting ser-
vices from the targeted addresses. To minimize the impact of
probing, we perform one-shot probes on suspicious addresses
with a daily maximum of approximately one hundred ad-
dresses. This is a negligible amount compared to our 10 Gbps
detection scale. For confirmed mining addresses, we perform

daily liveness tests that do not disrupt normal operations since
these addresses are dedicated to providing mining services. The
probe packets originate from a dedicated machine that hosts
web pages with our contact information. We did not receive
complaints during the study.

V. ROBUST CRYPTOMINING DETECTION

Existing studies have confirmed the identifiability of cryp-
tomining traffic patterns. However, robust detection is still
challenging regarding varying mining configurations. In this
section, we begin by characterizing cryptomining traffic. Fol-
lowing this, we outline our data collection process designed
to maximize mining traffic variations. We then analyze the
instability of current state-of-the-art detection algorithms and
introduce MineShark’s robust detection features.

A. Cryptomining Traffic Characteristics

Communications between miners and mining pools demon-
strate uniform traffic patterns, which is computation-centric,
mainly involving messages of job assignment and result sub-
mission. We study how diverse mining configurations affect
the characteristics of application-layer communication and
their network-layer representations, providing insights into the
uniformity and variability inherent in cryptomining traffic.

Message size serves as an indicator of the type of messages
exchanged in cryptomining. Each type of message consists of
unique keyword sets, typically encoded in compact formats
like JSON, fitting within a single packet. Thus, a mining flow
can be distinguished by a pattern of uniquely sized packets.
However, sizes are influenced by mining configurations, such
as mining algorithms, causing identical messages to use dif-
ferent keyword sets across configurations and result in varied
packet sizes. Nonetheless, within a single connection, packet
sizes for the same type of message remain consistent.

Message timing (frequency) is influenced by the nature of
mining pools and the hash rate of miners. Mining pools
schedule job assignment messages to coincide with the growth
of specific blockchains, affecting the pace of inbound traffic.
Miners impact bidirectional message frequency as higher hash
rates lead to more frequent result submissions and quicker
receipt of confirmations from mining pools. Thus, bidirectional
inter-packet delay is a reliable indicator of mining behavior.
Additionally, computation times on mining devices introduce
second-level delays, rendering the impact of millisecond-level
network transmission delays on overall variance negligible.

Message order reflects the temporal relationships among var-
ious semantic messages. For example, an inbound job assign-
ment can be followed by several outbound result submissions,
with each submission succeeded by an inbound confirmation.
This pattern repeats throughout the mining process and remains
consistent across different setups. Furthermore, the packet se-
quence mirrors messaging patterns, particularly in the relative
positioning of uniquely sized packets.

B. Cryptomining Dataset

Our data collection is designed to encompass a broad range
of variations in real-world cryptomining traffic regarding mes-
sage sizes, timing, and orders. We categorize the cryptomining
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Category Time (min) # Flows # Packets
Normal cryptomining [24], [23] 51,068 75 2,471,493

Obfuscated cryptomining 15,093 243 1,424,978
Perturbed cryptomining 2,880 48 221,400

Normal traffic [24], Gateway traffic 139,475 22,582 16,424,500

TABLE II: Dataset used throughout the paper.

Protocol Packet Number Packet Size Inter-packet Delay
ShadowsocksR [43] ✔ ✔ (Random) ✔

VMess [44] ✗ ✔ (Random) ✗
VLESS [44] ✗ ✔ (Fixed) ✗
Trojan [44] ✗ ✔ (Fixed) ✗

OpenVPN [45] ✔ ✔ (Fixed) ✔

TABLE III: Traffic features of obfuscation proxy.

data into three types: normal cryptomining, obfuscated crypto-
mining, and perturbed cryptomining, as detailed in Table II. In
addition to utilizing open-source normal cryptomining datasets
from previous work [24], [23], we contribute cryptomining
datasets specifically on obfuscation and perturbation.

The normal cryptomining dataset covers a wide range of
mining devices, ranging from low-end Raspberry Pis to mid-
end personal laptops and desktops, and extending to high-end
tower servers and GPU machines. This range introduces over a
125-fold variance in hash rate. Specifically, the dataset in [24]
was collected by executing cryptojacking malware, primarily
targeting Monero. While the dataset from [23] contains user-
initiated cryptomining, including Bitcoin, Ethereum, Ethereum
Classic, Zcash, among others to test the generalization capa-
bility of detection algorithms.

In addition to configuration variations, intentional traffic
manipulation poses challenges for traffic analysis, leading to
potential evasion risks. We investigate obfuscation and per-
turbation threats, both of which lead to altered packet features
affecting all detection algorithms listed in Table I. Specifically,
we analyze five popular obfuscation proxies often employed
for circumventing censorship. Their changes in traffic features
are summarized in Table III. For example, OpenVPN modifies
mining flows by changing packet sizes, reducing inter-packet
delays, and disrupting packet orders due to the encapsulation
of fixed-length VPN headers and the addition of keep-alive and
control channel packets. Detailed explanations of obfuscation
mechanisms can be found in Appendix B.

While obfuscation proxies aim to make specific traffic
patterns indistinguishable, perturbation methods typically in-
troduce small noise to prevent accurate analysis. Common
techniques include inserting dummy packets at regular inter-
vals, padding packets with a fixed number of bytes, and
splitting single packets into smaller fragments. While
padding alters packet sizes, both dummy insertion and
splitting interfere with the timing and sequence of the
original flow. Lee et al. [46] reported that the combined use of
dummy & padding & splitting methods is the most effec-
tive at evading learning-based cryptomining traffic detection.
We replicate their approach to ensure comprehensive testing.

We followed the traffic collection approach used in prior
research [24] to gather proxied and perturbed dataset. We con-
ducted collection on a single server (acting as a mining device)
within the campus network, as illustrated in Figure 2. For each
parameter combination listed in Table IV, we collected one-
hour cryptomining traffic and labeled it as proxied mining. The
mining software, set to default configurations, directed data to
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Fig. 3: (a) and (b) show the inaccuracy of MineHunter and
CJ-Sniffer, when applied to normal cryptomining traffic as
outlined in Table II. (c) and (d) show the distribution of
packet intervals and sizes, averaged over a five-packet window
from one-third randomly sampled traffic of each mining type
in Table II. The perturbed mining simultaneously performed
dummy, padding, and splitting operations.

the local machine’s SOCKS5 port, which was listened to by the
proxy client. This client then connected to commercial proxy
servers, which we accessed as paid subscribers. To capture
the obfuscated traffic, we used Wireshark to filter traffic
headed to the destination proxy server’s IP and port during
mining. In the case of OpenVPN, which operates differently
from the SOCKS5 proxy, we isolated its tun device within a
separate namespace to avoid recording any noise traffic from
other software. For perturbed cryptomining, we used the code
from [46], which uses a similar setup as the SOCKS5 proxy.
We set the server machine within the campus network, which
perturbed the traffic in communication with the collection
machine yet maintained normal connections to external mining
pools. We collected 16 hours of dummy & padding traffic and
32 hours of dummy & padding & splitting traffic on the
collection machine with Wireshark, both labeled as perturbed
mining.

Finally, we expanded the labeled normal traffic dataset
(also referenced from [24]) threefold by sampling gateway
traffic in our real-world evaluation environment (detailed in
Section VII-A). To avoid potential packet loss on a 10 Gbps
network, we opted for Dpdk-pdump [47] over Wireshark for
traffic collection. Across five days, we randomly selected 1,000
flows per hour to ensure a broad diversity of applications in our
traffic samples. For each connection, we recorded only packet
timestamps and sizes.

C. Unstable Detection of Prior Work

Prior work falls short in robust detection due to their usage
of unstable features that lack generalization capabilities. For
example, MineHunter [14] and CJ-Sniffer [23] focus mainly
on timing features and neglect the analysis of message order,
which narrows their detection scope to specific mining configu-
rations. IoT-Light [24] and Crypto-Aegis [16] utilize statistical
features aggregated from a set of packets, which are vulnerable
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Cryptocurrency Mining Protocol Proxy Protocol Mining Pool Server Location Mining Hardware Mining Software

Ethereum Stratum+TCP/SSL,
Ethproxy+TCP/SSL SSR, Trojan, VMess, VLESS,

OpenVPN

Ethermine, F2pool, Nanopool, 2Miners,
Poolin, Flexpool, Herominers, 666pool,

Ezil.me, Xnpool, Hiveon, etc.

Japan, Singapore,
HongKong,

France, America,
Russia, Korea,

etc.

RTX3090 * 4,
RTX3090,
RTX2060

NBMiner
Ethereum Classic

Monero Stratum+TCP/SSL Supportxmr, Minexmr, 2miners,
Nanopool, Xmrpool.eu, etc.

IntelXeonE5-2678,
RTX2060 XMRig

TABLE IV: Summary of obfuscated cryptomining dataset.

to traffic obfuscation and perturbation. We demonstrate the
inaccuracy of each algorithm using our collected dataset. A
detailed comparison is presented in Section VII-B.

MineHunter evaluates cryptomining flows by examining
the delay of the first packet arrival after each new block
is generated in a cryptocurrency’s blockchain, which is re-
ferred to as local distance. It employs a time-based detection
window synchronized with the blockchain’s block generation
interval. Within each window, a similarity score is computed,
where a higher score suggests a higher likelihood of mining
activity. Figure 3a displays the detection results for normal
cryptomining traffic from our dataset using the recommended
score threshold of 0.6. Each data point corresponds to the
outcome of one detection window. The average delay, depicted
on the y-axis, is derived by dividing the window size by
the total number of packets within that window. We find
that MineHunter’s heuristic-based scoring method can lead
to wrong prediction, particularly when packet arrivals do not
consistently follow the new block generation timing, as is often
the case for mining flows with low message frequency.

CJ-Sniffer identifies mining flows by matching their in-
bound inter-packet delay distribution against known mining
patterns using the Two-Sample Kolmogorov–Smirnov test.
However, as Figure 3b demonstrates, the delay distribution
for normal mining traffic exhibits significant variation due to
different configurations; each curve corresponds to the delay
distribution for an individual mining flow. This variation leads
to inconsistent identification: the same flow may be labeled as
mining when compared to certain samples in the database, yet
benign against others. Increasing the number of comparison
samples can result in more false positives, complicating the
effort to establish a reliable detection setting.

IoT-Light and Crypto-Aegis derive statistical traffic fea-
tures, such as mean packet delay, from raw packet features
in fixed-length windows to train ML models. However, as
shown in Figures 3c and 3d, obfuscation and perturbation
can significantly alter raw packet features, evading classifiers
trained solely on normal mining traffic. While retraining with a
broader dataset is a potential defense, it raises concerns about
the ability of the classifier to detect unseen mining activities
without having been trained on their distinct traffic features.

D. Features of MineShark

MineShark achieves robust detection by analyzing temporal
patterns in sequences of packets with unique sizes and timings.
It is effective due to the inherent regular patterns in mining
communication accross various setups. As shown in Figure 4a,
each message in a mining flow corresponds to a deterministic
set of bidirectional packets. For instance, an inbound job
assignment packet is typically followed by an outbound ACK
packet, and an outbound submission packet is succeeded by
an inbound confirmation packet, with an interleaving inbound
ACK packet. Such inter-message regularity, rooted in mining
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(b) Feature extraction of MineShark.

Fig. 4: Features of the original and manipulated mining flows,
including: (i) random padding, (ii) dummy insertion, and (iii)
packet split. Blue and red suggest inbound and outbound
packets, respectively. Grey boxes represent altered features.

protocol design, persists across diverse mining configurations.
We further illustrate the feature consistency of manipulated
mining flows. The random padding alters packet sizes but
maintains interval regularity. The dummy insertion impacts
packet interval and order at insertion points, shifting subse-
quent original patterns. The packet splitting leads to a feature
split, but the regularity across messages remains largely intact.

MineShark utilizes a fine-grained representation to capture
message regularity. Specifically, it constructs 4 × N matrices
to represent features of packet size, timing, and order, where
N indicates the size of the detection window. As illustrated
in Figure 4b, the first two rows of the matrix correspond to
bidirectional packet sizes, and the last two rows to inter-packet
delays. The sequence of features in each row preserves the
packet order. This representation effectively aligns with how
traffic manipulation impacts feature sets. Random padding,
modifies size features at the positions of non-ACK packets.
Dummy insertion leads to a shift in the original feature
sequence at regular intervals. Packet splitting results in a
corresponding feature split for fragmented packets.

MineShark analyzes the feature matrices using a CNN
model because of its proficiency in recognizing regular pat-
terns. Although CNN has also been applied to other traffic
analyzing tasks, such as website fingerprinting or flow corre-
lation [48], [34], MineShark initiates the first attempt to apply
it for cryptomining detection with obfuscation and perturbation
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setups. Training details are provided in Appendix A.

VI. MINESHARK SYSTEM

In this section, we present MineShark’s detection pipeline,
as formulated in Section II-B. Concretely, the line-rate infer-
ence pipeline addresses efficiency concerns and automatic min-
ing confirmation avoids the overwhelming of false alarms and
facilitates mining discovery, especially the encrypted mining
traffic. In addition, we apply a self-improving framework to
update the model with accumulated labeled data over time.

A. Overview

Figure 5 illustrates MineShark’s end-to-end detection
pipeline. The inference pipeline drains input traffic by first
locating the in-memory connection record for each incoming
packet (➊). Then, packet features are appended to the con-
nection’s detection window (➋). Once the window reaches its
capacity, the pipeline transforms it into a feature matrix and
sends the matrix for model inference (➌). Original window
is cleared to accommodate new features. A flow is consid-
ered suspicious if any of the detection window gets positive
prediction result (➍). A number of subsequent packets are
sent for keyword scanning, which aims to confirm plain-text
cryptomining immediately (➎). Note that keyword scanning
cannot keep up with line-rate traffic without adopting the
model to select suspicious targets. Meanwhile, subsequent
features of suspicious flows are persistent to storage.

An automatic confirmation module employs a set of worker
threads to correlate external addresses using saved feature
documents (➏). During this process, specific addresses are
monitored to uncover existing or emerging mining threats (➐).
Apparent false alarms are automatically removed by algorithm.
Remaining suspicious addresses are ranked for monitoring as
well as human investigation (➑). Active probing is extensively
performed in various confirmation operations (➒).

The updating framework gathers detected mining traffic
as well as misclassified benign traffic to improve model
performance (➓). The label correctness is guaranteed by the
confirmation module.

B. Line-rate Inference

We implement the inference pipeline from the ground up as
generic detection systems do not support deep learning (DL)
models. We identify the following key performance contracts
to avoid detection failure.

Line-rate feature extraction. No packet loss occurs during
feature extraction is crucial as ML models are typically trained
on features of complete connections. For example, losing fea-
tures of job assignment packets may result in misclassification
for the corresponding detection window.

Zero loss of model inference. DL models can be computation-
ally expensive. It is important to guarantee that all extracted
features are predicted by the model, i.e., no drop of QInfer.

To ensure efficiency, we utilize the following strategies:

Kernel-bypassing framework. MineShark performs stateless
connection tracking to extract packet size and interval features,
eliminating overhead exposed by kernel networking stack.

Multi-core parallelism. The pipeline executes feature extrac-
tion, model inference, packet inspection, feature recording,
and timing modules on separate CPU cores. The mapping
between CPU cores and modules supports a many-to-many
configuration, enabling elastic resource allocation based on the
traffic input. Data sharing is facilitated through zero-copy ring
buffers, reducing synchronization costs.

GPU acceleration. We leverage GPU acceleration to address
the inefficiency of CPU inference. To demonstrate the bottle-
neck, we provide a detailed evaluation in Section VII-D.

Efficient IO management. MineShark saves features of suspi-
cious connections into documents. To avoid IO bottlenecks, it
stops recording when the positive detection ratio drops below
1%, saving 58% IO bandwidth in deployment.

Time module and system monitoring. The time module (not
shown in Figure 5) periodically clears expired flow contexts
and monitors system status. The timeout threshold is set to be
longer (120 seconds) for suspicious connections to increase
their detection ratio as compared to normal connections (60
seconds). To prevent packet loss during feature extraction,
we allocate adequate CPU resources to maintain a sufficient
extraction speed, avoiding any increase in packet-loss counters
in the NICs. In case of any violations of the performance
contracts, alarms are triggered to the administrator.

C. Cryptomining Confirmation

MineShark steps toward flexible cryptomining detection
by first driving model inference to line rate. However, the
inference results still need confirmation. We explore efficient
algorithms to maximize mining discovery and minimize false
alarms, meanwhile, guaranteeing no drop of QSuspicious.

Correlation graph. A correlation graph, denoted as G, is
shown in Figure 6a. Each leaf node, denoted as R, represents
a suspicious connection detected by the inference pipeline.
Relative connections are first grouped by internal IP-Port
and then external IP-Port. Visits toward the same external IP
addresses as well as IP addresses resolved to the same domain
are correlated. Note that the internal IP-Port can be a public
address on NAT devices (illustrated in Figure 2). Therefore,
MineShark reports external IP addresses to block.

MineShark performs monitoring on confirmed mining ad-
dresses or risky suspicious addresses, establishing new con-
nections in the correlation graph that assist mining discovery.

Address monitoring. Given a specific monitored address, IP-
Port and IP-Domain correlation is performed. Port correlation
is effective as mining pools typically open multiple ports for
miners of different hash power or employing different setups
(e.g., using HTTP or TLS protocol) to connect. Identifying
one of them can expose others. This is especially useful in
confirming encrypted mining traffic if observing plain-text
mining traffic associated to other ports on the same server.
Therefore, the inference pipeline records any port visits to
the monitored IP and performs keyword scanning and feature
recording to all the visit flows. Probing packets are sent to
the recorded ports to request mining service. An established
mining connection confirms the address hosting a pool server.

Domain correlation is effective when an address links to
current or historical domains associated with cryptomining, or

8



Suspicious
Yes

Feature Extraction Model Inference Mining? Packet Inspection

Correlation Analysis

Address MonitoringActive Probing

False Removal &
Address Ranking Model Retraining

Normal

MonitoredFlow Tuple LabelFeatures Last Seen

224.1.0.1:123 - 3.1.1.1:80 in:   [[317, 0.2], ..., [66, 3.12]]
out: [[64, 0.3], ..., [523, 6.73]]

1685738046Traffic
Input1

First Seen

1685713295

Detected
Window

2

Positive
Number

1

In-memory
FlowTable

CryptoMining Alert

Yes

Yes

2
3 4

6

10

Documents

Line-rate
Inference

Match?

Automatic Confirmation 

QInfer

QSuspicious

59

7
8

Fig. 5: Workflow of MineShark’s detection pipeline.
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Fig. 6: (a) Correlation graph and statistical analysis of 10,000
suspicious connections, including: (b) flow duration, (c) ML
score, and (d) parallel internal visits of 1,000 suspicious
addresses. Dashed line represents mining average.

when related addresses are involved in mining. Both scenarios
increase the suspicion of the monitored address. Therefore, the
confirmation module aggregates domain information for the
monitored address and probes associated addresses to identify
mining pools. Newly confirmed mining addresses are added
to the search list, until no further addresses are identified
or a predefined time limit is reached. This process forms
a defensive denylist, thwarting malware attempts to bypass
blocking via domain exploitation. Internal visits hitting the
denylist trigger immediate alerts.

Although effective, resource and efficiency constraints limit
the monitoring of every suspicious address. For example,
domain information collection requires paid services, and
correlation graphs require frequent updates to reflect the latest
changes. Moreover, matching packets against monitored ad-
dresses and extensively logging port visits can decelerate the
inference pipeline. Given large amount of suspicious addresses
flagged by the model, MineShark first filters easy false alarms
by counting harmless visits within correlation graphs.

False alarm removal. Easy false alarms are characterised by
exhibiting mining similarity in only one or several detection
windows in a connection. We use a metric called harmless visit
ratio to identify benign addresses, which refers to the propor-

(a) Benign address. (b) Mining address.

Fig. 7: Visit pattern of (a) benign and (b) mining addresses.
Red and blue nodes represent external and internal addresses.
Green and orange nodes represent harmless and risky visits.

tion of harmless visits to total visits. The idea is that if majority
visits exhibit low mining similarity, then the occasional high
similarity poses lower risk. A harmless visit is a reported
connection (R) with only one positive window. We exclude
connections with zero positive window in graph construction
to reduce noise. As illustrated in Figure 7, the harmless visit
ratio (τ ) of benign address is significantly higher than that of
the mining address. Based on this observation, we consider an
address benign if its τ exceeds a predefined threshold (T ).
Note that τ of each address can change over time. Some
addresses may fluctuate between benign and suspicious based
on the evolving visit patterns. Active probing is performed
to avoid misclassifying mining addresses as benign. Notably,
this algorithm reduces false alarms from O(105) to O(102)
per day, as evaluated in Section VII-C4.

Finally, MineShark ranks the remaining addresses based on
long-term behavioral features exhibited in correlation graphs,
which prioritizes more suspicious addresses to monitoring and
provide reliable labels to the updating framework.

Address ranking. We characterize suspicious mining connec-
tions using features of duration and average ML score. Mining
duration tends to be long compared to normal connections.
For example, 74% of suspicious connections last less than
10 minutes, as shown in Figure 6b. However, the average
mining duration is 1.9 hours. Duration alone is insufficient, as
many legitimate applications also maintain long connections.
We further calculate the average ML score to reflect long-term
mining similarity. As shown in Figure 6c, 62% of connections
have a negative average score, while mining connections have
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an average score of 13.8 when the model threshold is set as 2
(see Appendix A for parameter details).

Address features are aggregated from associated connec-
tions. Specifically, the duration of an address, denoted as V , is
the maximal duration among connections, i.e., V.duration =
max
R∈G

(R.duration). This intends to highlight long duration
behavior. Aggregated ML score is determined by the harmless
visit ratio (τ ) and the sum of per-connection scores. Formally,
V.score = (1 ± τ) ·

∑̄
R∈G

R̄.score, where the + is used for

a positive sum value and − for a negative one. R̄ suggests
counting risky connections only. Hence, the ML score can
be penalized by a significant τ , lowering the ranking position
of benign addresses. In addition, we exploit timing relations
between independent internal visits by counting the number of
unique internal addresses that launch connections to a specific
suspicious address within a two-hour time window. As shown
in Figure 6d, the scale of simultaneous mining to the same
pool does not exceed two machines. In contrast, visits toward
less than 20% of benign addresses behave similarly.

Finally, we employ DAS ranking [49] on address features,
which prioritizes addresses with longer duration, higher score,
and lower degree of parallel visits in front. Addresses with
better results in any two features are placed next, followed by
addresses that are only significant in one feature dimension.
Top ranking addresses are prior in monitoring and investi-
gation. We demonstrate well separation between benign and
mining addresses using three features in Section VII-C5.

Active probing. We construct both plain-text and encrypted
probing packets and target commonly used mining ports under
the guidance of work [27]. For confirmed mining addresses, we
perform per-day probing to update the address status. For other
cases, the probing is one-shot per address. Although probing
may misidentify mining addresses as well, for example, tar-
geting wrong ports or using wrong packet format, a successful
response can confirm mining activity with high confidence.
Therefore, we combine probing with other analysis to jointly
judge suspicious addresses.

D. Online Model Improvement

Data collection is pivotal in MineShark’s self-improving
updating framework. The inherent imbalance in the detection
environment results in uneven class representation in the train-
ing data, leading to potential prediction bias. The bias becomes
visible after operating the model online. Thus, the updating
framework aims to improve model accuracy by focusing on
its current classification errors in the deployed environment.
Specifically, this involves collecting poorly recognized mining
traffic and misclassified benign traffic.

Expanding mining traffic samples is crucial, especially
to include mining configurations unfamiliar to the current
model. Our multifaceted confirmation strategy can accumulate
valuable mining samples that are not easily recognized. For
example, the model may only identify a fraction of detection
windows in a plain-text mining connection, but subsequent
keyword scanning confirms the mining activity. In other cases,
the model may well detect traffic toward specific mining
ports, while additional mining services on other ports are
uncovered through correlation techniques and active probing.

The updating framework collects mining traffic from detection
failures to strengthen future models.

Misclassified benign traffic is also valuable as it is more
specific to mining activities. For example, specific pages of a
website may exhibit more cryptomining similarity than others,
making their traffic more effective for training purposes. How-
ever, automatically identifying these subtle differences using
a crawler is challenging, while manual selection of relevant
web pages trades off efficiency for quality. Fortunately, the
confirmation module can facilitate the collection process as it
filters out model mistakes from huge amount of gateway traffic
and performs mining-specific analysis to ensure label accuracy.
We add misclassified benign connections with longer duration
and higher ML score than average mining connections into
training set, helping the model refine its boundary.

In updating process, we accumulate new training data with
the old one. Hyper-parameters are adjusted if accuracy falls
short of expectations. We also experiment with various feature
scaling methods to balance their influence on learning weights
between size and interval features. Updates are scheduled
approximately every six weeks, a period chosen to allow
adequate observation of the model’s performance metrics,
such as the rate of newly detected mining addresses. If the
number of newly discovered mining addresses in the first three
weeks falls behind 20% or the false alarm volume exceeds
confirmation throughput (causing drop of QSuspicious), we fall
back to the previous model and wait for the next update stage.

VII. EVALUATION

We deployed MineShark online at a 10 Gbps gateway in
our campus from 3/1/2023 to 12/31/2023 for cryptomining
detection (Section VII-A). Specifically, our evaluation answers
the following questions:

Robustness: Can MineShark perform robust detection against
varying mining configurations? (Section VII-B)

Flexibility: Can MineShark detect cryptomining traffic with
ML models in real world? How does its timeliness compare
to the rule-based IDSes? (Section VII-C)

Efficiency: How efficient can MineShark process traffic under
varying resource constraints? (Section VII-D)

A. Deployment Setup

MineShark was developed in 15K lines of C/C++ and
Python code. Its deployed server consists of two Montage
Jintide(R) C6248R CPUs with 48 cores, 376 GB of memory, a
dual-port 10 GbE Intel X722 NIC, an NVIDIA RTX2060 GPU,
and 12 TB of SSD storage. The operating system is Ubuntu
20.04 with GNU/Linux 5.15.0-52-generic. We use DPDK [47]
as traffic processing framework and TensorFlow C API (with
GPU support) [50] for CNN inference. The server receives
mirrored traffic from a 10 GbE SPF+ port, which is connected
to the switch mirroring port via an optical fiber.

1) Online Environment Characterization: We profile the
deployed network environment in Figure 8, which represents
the requirements for detection algorithms regarding efficiency
and robustness. First, feature extraction needs to operate at
line rate, otherwise, only a small portion of gateway traffic
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Fig. 8: Profiling of gateway traffic over one-week observation:
(a) the average traffic speed is 7 Gbps, (b) the average flow
concurrency is 3.2 Million, (c) the average speed of feature
generation is 10Kps with a fifty-packet detection window, and
(d) the input traffic can raise significant model alarms.

is detected (Figure 8a). Second, algorithms must be memory-
efficient due to the huge number of concurrent flows (Fig-
ure 8b). Third, model inference must keep pace with feature
extraction, otherwise, there is severe loss of QInfer (Figure 8c).
Finally, unreliable detection produces significant model alarms,
which overloads the confirmation module and causes loss of
QSuspicious (Figure 8d, explained in Section VII-B).

Results preview. MineShark processed gateway traffic with
four CPU cores dedicated to the GPU-accelerated inference
pipeline and one core allocated to the confirmation module. It
detected 99.8% of input traffic, where the 0.2% loss was due
to traffic bursts overwhelming in-memory flow table. No drop
was observed in QInfer, meanwhile, all the inputs to QSuspicious
underwent confirmation. The alarm ratio was less than 3%.

B. Robustness of Detection Systems

We assess the robustness of MineShark against state-of-the-
art detection systems using the dataset referenced in Table II.
First, we train the baseline model with normal cryptomining
and network traffic from [24] (as shown in the first and fourth
rows of Table II). This step validates MineShark’s performance
against established benchmarks, with results shown in the
first row of Table V. Next, to evaluate the generalization
capabilities of different algorithms, we introduce obfuscated
mining traffic (detailed in the second row of Table II) into the
test set without including it in the training set. The second
row of Table V presents the baseline model’s performance on
obfuscated traffic without learning obfuscation features. Then,
we add obfuscated mining traffic, which includes all proxies’
features, to the training and test sets to ascertain if prior
knowledge of obfuscation features can enhance the baseline
performance. The results are shown in the third row of Table V.
In training this enhanced model, we also use gateway traffic
(listed in the fourth row of Table II) to simulate the online
detection environment. Finally, we test the enhanced model
against perturbed cryptomining traffic (as shown in the third
row of Table II) by adding it into the test set not training set

to evaluate model’s resilience. Rows four and five of Table V
show the results, where Dummy & Padding and Dummy &
Padding & Splitting traffic are separately added to the
enhanced baseline’s test set without the model learning the
perturbation features.

For ML-based systems, namely IoT-Light, Crypto-Aegis,
and MineShark, we set the training-to-test data ratio to 4:1.
To ensure a balanced representation, we randomly sampled a
subset of normal traffic in the test set to match the quantity
of mining samples, making the demonstration of performance
variation with different types of inputs clearer. In the case
of CJ-Sniffer, which constructs a signature database from
the patterns of interval distribution of inbound mining traffic,
including all training samples in testing results in a relatively
low precision of only 53.5%. To balance between precision
and recall, we randomly sampled 20% of mining flows from
training set. MineHunter does not undergo a training phase,
therefore, all its performance comparisons are made against
the initial baseline.

MineShark exhibits high precision and recall across various
mining configurations, along with a low false positive rate
(FPR). In comparison, CJ-Sniffer and MineHunter demonstrate
lower recall, raising concerns about their effectiveness in
detecting real-world mining activities. IoT-Light, on the other
hand, is prone to high FPR, often incorrectly identifying
benign traffic as mining traffic. This is largely attributed to
their inappropriate feature extraction approach, which fits an
encoder to each feature column and transforms the feature
values into integers. However, this results in varying encoding
schemes each time the composition of data samples in the
test set changes, causing noticeable drops in testing accuracy.
Crypto-Aegis, while showing commendable results, struggles
to accurately detect obfuscated mining flows and does not
generalize to the online environment. As shown in Figure 8d,
when we added sampled gateway traffic into the test sets of
enhanced Crypto-Aegis and IoT-Light models, limiting the
number of detection to a maximum of five windows per flow,
the alarm ratio for both models exceeds 30%. The high alarm
rate impedes real-world deployment. We provide more detailed
analysis of each algorithm’s results in Appendix C.

C. Cryptomining Detection in the Wild

MineShark successfully detected 105 mining pools in ten
months. We highlight its flexibility in detecting mining threats
ahead of commercial IDSes and open intelligence. Timeliness
is crucial as mining operations can significantly disrupt normal
business functions. Moreover, faster detection limits attackers’
profits and prompts earlier bans in community by sharing the
detected addresses. We characterize the detected mining traffic
to reveal the detection challenges. In addition, we evaluate the
effectiveness of address monitoring, false alarm removal, and
suspicious address ranking in confirming mining activities and
demonstrate model improvement through updating.

1) Detection Timeliness: MineShark was deployed along-
side commercial IDSes without the authority to modify their
shared denylist, which is used to block mining connections.
Thus, for addresses detected by MineShark before others, we
measure the delay from the initial detection to the cessation
of connections to the detected addresses. We distinguish cases
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Test Case CJ-Sniffer MineHunter IoT-Light Crypto-Aegis MineShark
Precision Recall FPR Precision Recall FPR Precision Recall FPR Precision Recall FPR Precision Recall FPR

Baseline 79.2% 84.4% 2.4% 93.6% 76.5% 9.2% 98.2% 98.9% 3.2% 95.4% 87.9% 0.7% 99.3% 94.8% 0.3%
Obfuscated Mining 82.0% 14.8% 2.4% 95.1% 78.8% 9.2% 50.3% 89.7% 85.2% 99.0% 67.0% 0.7% 99.9% 97.3% 0.3%
Enhanced Baseline 81.8% 40.7% 1.5% − − − 91.1% 94.8% 6.8% 97.6% 96.7% 2.5% 99.8% 98.9% 0.1%
Dummy & Padding 82.0% 38.4% 1.5% 95.5% 78.6% 3.3% 50.2% 92.4% 94.1% 99.1% 98.7% 2.5% 99.8% 98.8% 0.1%

Dummy & Padding & Splitting 81.7% 33.1% 1.5% 95.9% 75.7% 3.3% 7.7% 45.4% 87.4% 99.0% 89.1% 2.5% 99.8% 90.5% 0.1%

TABLE V: Robustness comparison of different detection systems.
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Fig. 9: MineShark can flexibly detect cryptmining before
commercial systems and open intelligence.

where an address was subsequently detected and blocked by
other IDSes, evidenced by extended periods of only failed
internal connection attempts, from those where the address
appeared to be abandoned by attackers rather than being
actively banned, indicated by a lack of connection failures
before their disappearance. For addresses recognized first by
other IDSes, MineShark could no longer detect them due to
the lack of active connections for analysis.

MineShark identified all 105 mining addresses faster than
other IDSes. As shown in Figure 9a, the average detection
delay was five days for plain-text mining and nineteen days
for encrypted mining. Moreover, 13 addresses went completely
undetected by other IDSes, with activity duration up to 98 days
and a median being 26 days. These addresses demonstrated
concerted efforts to conceal their activities. For example, they
all evaded open-source intelligence flags and predominantly
utilized encrypted connections for mining, obscuring the sig-
natures and patterns that IDSes typically rely on.

We further investigate detected addresses with VirusTotal’s
IP and graph APIs [25], which are commonly used in security
analysis. Figure 9a shows that only 28.4% addresses are asso-
ciated with mining activities in front, such as communicated
by cryptojacking malware. However, 33.3% addresses are
reported behind our local detection. Furthermore, 38.3% ad-
dresses do not show any mining threats at all until this paper’s
submission. Figure 9b presents detailed statistics. The x-axis
shows labels provided by the IP engine and the stacked bar
shows labels from manually analyzing graph engine’s reports.
For example, the IP engine flags 24 addresses as clean sites, but
we find 12 of them are related to mining in reality, e.g., their
current or history domain names contain sensitive keywords,
such as xmr or pool. Similarly, 21 unrated sites, which are
not examined by the IP engine, are correlated to mining by
the graph engine. However, other 40 unrated addresses are
only correlated to non-mining threats or exhibit no threats.
The above analysis raises concerns regarding timeliness and
reliability in applying open intelligence, while MineShark’s
real-time detection and mining-specific analysis close the gap.

2) Cryptomining Characterization: We analyze the de-
tected cryptomining traffic to understand the detection chal-
lenges better. As shown in Figure 10, we find that the inter-
packet delay of detected mining traffic resembles that of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

C
D
F

Inter-packet Delay (Second)

Normal
Obfuscated
Perturbed
Detected

(a) Packet interval distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

C
D
F

Packet Size (Byte)

Normal
Obfuscated
Perturbed
Detected

(b) Packet size distribution.

Fig. 10: Comparison of detected cryptomining traffic to the
manually collected cryptomining training samples.

normal mining. However, the packet sizes align more with
obfuscated mining. This difference highlights the need for
robust detection algorithms and the importance of continually
enriching training datasets to refine models post-deployment.
Regarding encrypted mining traffic, which constituted 17.6%
of the recorded mining connections, we observe that 69.2% of
associated pools adopted TLS 1.3 protocol, which encrypted
the server’s certificate. Moreover, even among the pools that
provided TLS 1.2 services, half did not feature discernible key-
words in their Subject Alternative Name fields. These factors
complicate the identification of mining activities by analyzing
handshake information, a common approach in IDSes.

3) Address Monitoring: We validate the effectiveness of
mining address monitoring. We find that 30.8% of the ad-
dresses opened more than one service port, with a single
address opening up to 13 ports. Through domain correlation,
we discover that 41.0% of the identified mining addresses
cluster within the top five groups. The size of the defensive
denylist, which includes mining addresses identified through
domain analysis but not observed in our network, was ap-
proximately 69% larger than the list of observed addresses.
Note that the total of 105 mining addresses only includes those
initially reported by the inference pipeline, excluding addresses
identified through correlation analysis. For a comprehensive
understanding, a detailed case study that demonstrates the
detection workflow is presented in Appendix D.

4) False Alarm Removal: We find that even a performant
model can produce large amount of false alarms when de-
ployed at scale. Fortunately, the false alarm removal algorithm
can reduce the number of alarm flows by two orders of
magnitude, as shown in Figure 11a. The Alarm bar shows
the number of suspicious flows flagged by the model each
day. After filtering out false alarms, only around 100 suspi-
cious addresses remain per day, as shown by the Risky bar.
These addresses are subject to further confirmation actions.
Addresses that cannot be confirmed as mining-related await
further updates or manual investigation. Operators can manage
the investigation workload by prioritizing the most suspicious
addresses or applying specific filters, such as the Alert bar,
which identifies addresses with a positive ML score. Statistics
collected at other time periods showed similar results.

12



100
101
102
103
104

04-04
04-05

04-06
04-07

04-08
04-09

04-10

N
um
be
r

Date

Total Alarm Risky Alert

(a) False alarm removal.

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

C
D
F

Ratio

Benign
Suspicious

(b) Harmless visit ratio.

102
103
104
105
106

 0  10  20  30  40  50  60

N
um
be
r

Days

Benign
Suspicious

(c) Address label accumulation.

-75
-50
-25

 0
 25

 50

ML Score
 0  1  2  3  4  5  6  7

Duratio
n

100

101

102

Pa
ra
lle
l V
is
its

Suspicious
Mining

(d) Address ranking.

Data Precision Recall FPR
Baseline 99.9% 82.3% 0.1%

Before Jun. 99.9% 85.0% 0.1%
Jul. 99.8% 90.4% 0.4%

Aug. 99.9% 88.2% 0.1%
Sep. 99.8% 92.5% 0.4%

After Oct. 99.7% 93.3% 0.7%

(e) Model improvement.

103

104

105

106

Mar.
Apr.
May.
Jun. Jul. Aug.

Sep.
Oct.
Nov.
Dec.

 0

 20

 40

 60

 80

A
la
rm

 C
ou
nt

D
et
ec
te
d 
Po
ol

Date

Alarm Mining Address

(f) Online accuracy.

Fig. 11: Effectiveness of confirmation and updating.

The employed harmless visit ratio threshold (T ) is also
appropriate. Figure 11b shows that with T set as 0.9, the τ of
98% of labeled risky addresses was below 0.9. In contrast, over
98% of labeled benign addresses had τ equal to 1. Therefore,
the current threshold is unlikely to cause mislabeling problems.

We find the accumulated address labels effectively filter
suspicious-but-benign network connections. As shown in Fig-
ure 11c, both benign and suspicious labels grew rapidly at
initial, but they stabilized as more connections are associated
with each address. This trend aligns with our objective of
identifying benign addresses by considering visits over time
and let the majority judge the address behavior. Interestingly,
we observe that turning points occurred around five days after
the algorithm starts. This indicates the limited scale of popular
services, which can trigger ML model alarms frequently due
to their specific cryptomining-like traffic features.

5) Suspicious Address Ranking: We demonstrate the effec-
tiveness of employed address features. Figure 11d illustrates
the distribution of feature values of the top 1,864 observed
risky addresses. We find that mining addresses (marked by red
crosses) have apparent long duration, high ML score, and low
parallel visits. However, any single feature is not enough to
distinguish them without combining all three features, indi-
cating complex conditions in real world. Notably, the ranking
algorithm successfully placed a total number of 43 mining
addresses, which conducted encrypted mining, in the top 4%
position of the monitoring list on their discovery day, leading
to effective confirmation through active probing.

6) Model Improvement: We show accuracy improvement
by training with newly discovered mining samples. We first
conduct dataset experiments by constructing a new dataset
comprising all detected mining samples. The dataset is par-

titioned into five parts according to the detected time. We
sequentially add each part to the training set and test the
model on the remaining data, simulating the update process.
Figure 11e shows the result. The baseline accuracy is measured
using the enhanced model, as detailed in Table V. Starting from
the second row, we randomly replaced original samples in the
enhanced model’s training set with new data, maintaining the
unknown data ratio of 8.9% in all tests. The original training
set contained 450,990 samples. For each time period, we ran-
domly selected 50,000 samples and divided them into training
and test sets using a 4:1 ratio. Five test sets were integrated into
the original test set of the enhanced model, which remained
unchanged throughout the experiment. We find that the recall
metric continuously improves, suggesting the usefulness of
learning from unfamiliar features and applying this knowledge
to similar targets in the future.

We further report the real-world impact of updates in
Figure 11f, illustrating the improvement in the detection ratio
(as defined in Equation 1) over time. The line displays daily
alarm counts and the bar shows monthly detected mining ad-
dresses. The training data comprises both accumulated mining
and false alarm traffic. The most interesting update happened
on 7/13/2023. Despite an increase in the alarm ratio from
0.2% to 2.2%, the number of discovered mining addresses
tripled. The outcomes of other updates are more consistent.
In reality, the FPR of that model was as low as 0.1% in
offline testing, which reminds us that dataset evaluation is not
enough to assess a model’s real-world performance. Moreover,
optimizing detection ratio requires simultaneous improvements
in model accuracy and confirmation speed.

D. System Efficiency

We evaluate the efficiency of feature extraction and model
inference, which are key to process traffic at line rate. We test
scalability by varying assigned CPU cores and pinpoint the
bottleneck in deep learning model inference. We demonstrate
GPU acceleration can eliminate the bottleneck. MineShark can
readily integrate simpler ML models, such as a backup SVM
model in case of GPU failure. We evaluate its performance
in Appendix E, offering insights into the trade-offs between
performance and cost when employing different models.

We create high-speed traffic more than 10 Gbps for stress
testing. We merge traffic dataset (Table II) into one large packet
file, then load the packet file into memory and recirculate
packets to the highest speed. Our evaluation metrics include:
(1) packet throughput, which is the number of processed
packets per second, (2) extraction latency, which is the average
processing time of one packet, and (3) inference latency, which
is the average inference time of one feature matrix.

We scale the input traffic by adding more input queues.
Each queue binds with one extraction and one inference core.
Since not every flow generates feature matrices (e.g., due
to too few packets), we simulate the proportion of inferred
features by controlling the inference ratio. For example, a
25% ratio indicates one-fourth of extracted matrices are sent
for inference. We back propagate the pressure of inference
module to extraction module by forcing the extraction core to
wait when QInfer reaches its capacity. This ensures no drop of
input packets and features of QInfer.
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Fig. 12: Efficiency characteristics of MineShark’s inference pipeline on CPU (a, b, and c) and GPU (d).

1) CPU performance: We run each case for 15 minutes to
ensure system stability. As shown in Figure 12a, the packet
throughput increases as the inference ratio decreases, with the
peak throughput reaching 5.03 Mpps per queue. However, in
most cases, adding input queues (along with more CPUs) does
not lead to throughput improvement. This is attributed to the
unified TensorFlow execution environment on CPU reaching
the inference bottleneck. As further proved in Figure 12c, no
decrement in latency after the first bar indicates the inference
throughput reaches its peak. Therefore, 0.08 ms per matrix is
the optimal inference speed on CPU. Figure 12b shows per-
packet processing latency, which is inverse to the throughput.
The shortest latency for processing one packet is 0.19 us.

2) GPU acceleration: Aligned with CPU experimenting
setup, we set the inference ratio to 100% to enforce maximum
stress. As shown in Figure 12d, with 4, 6, and 8 queues, the
throughput reaches 8.78 Mpps, 12.29 Mpps, and 15.54 Mpps
(equivalent to 92.01 Gbps), respectively. The assignment of
8 queues decreases inference latency to 6.21 us per feature
matrix, resulting in a 12.9 times speedup compared to CPU. In
summary, GPU acceleration removes the inference bottleneck
and facilitates the attainment of line-rate performance.

VIII. DISCUSSION

Defences against black-box adversarial attacks. ML-based
network IDSes commonly face adversarial threats, with black-
box attacks representing more realistic scenarios [51]. Attack-
ers might use surrogate models to create adversarial features
transferable to the target system [52]. However, deploying such
attacks on live network traffic is challenging [53]. Developing
the surrogate models requires accurate real-time predictions
of the target model’s outcomes. The execution phase involves
converting these adversarial features into replayable network
traffic and adjusting for network variability. Therefore, our
evaluation focuses on simpler attacks that manipulate traffic
features through existing obfuscation proxies and perturbation
techniques, rather than directly targeting model characteristics.
This realistic focus demonstrates effectiveness in degrading
the accuracy of current detection systems by altering standard
mining traffic patterns. MineShark outperforms existing sys-
tems in countering such attacks by leveraging the unconcealed
temporal features of mining message sequences. Moreover, by
analyzing every packet, MineShark maximizes the potential to
detect manipulated mining flows, because even a single accu-
rately identified detection window can initiate a comprehensive
analysis within the detection pipeline.

Moreover, MineShark can deploy multiple detection mod-
els in parallel to counter adversarial threats targeting specific
model features. The distinct feature extraction processes (e.g.,
employing time-based or sequence-based detection windows)
across models and the varied decision boundaries of different

models complicate the creation of universal adversarial flows,
ensuring robust detection. The current system design requires
no changes. Specifically, feature extraction cores can process
features for all active models, with adjustable core number to
ensure efficiency. Extracted features are shared with inference
cores through zero-copy buffers, optimizing memory usage.
Inference cores can execute different models and leverage
GPUs to accelerate. Mining confirmation and model updates
can be performed on a per-model basis.

Acceptable false alarm ratio and consequent workload.
MineShark can tolerate a higher false alarm ratio in exchange
for improved recall. False alarms are effectively filtered out
based on the harmless visit ratio of their destination addresses,
with the acceptable alarm ratio depending on the system’s
confirmation speed. As shown in Figure 11f’s alarm count,
one CPU core can process over 500,000 false alarms per
day. Therefore, by increasing the number of worker threads
processing QSuspicious, MineShark can handle a higher alarm
ratio. After removing false alarms, MineShark automatically
confirms suspicious addresses, significantly reducing the hu-
man investigation workload. Although there is some delay
before confirmation is completed, this process still provides
faster results compared to manual analysis.

IX. CONCLUSION

We developed MineShark, a learning-based system for de-
tecting cryptomining traffic at scale. It utilizes robust features
that are resistant to obfuscated and perturbed cryptomining
traffic. It incorporates a line-rate inference pipeline to drain
high-speed traffic, an automated confirmation module to pro-
vide reliable detection results, and a self-improving updating
framework to improve model accuracy post-deployment. We
deployed MineShark at our 10 Gbps campus network over a
period of ten months, where it successfully discovered 105
mining pool addresses in ahead of other commercial systems.
This showcases the robustness, flexibility, and efficiency of
MineShark in real-world scenarios.
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APPENDIX A
MODEL DETAILS

Layer Details

Convolution Layer 1

Kernel num: 20

Kernel size: (2, 20)

Stride: (2, 1)

Activation: Relu

Max Pool 1
Window size: (1, 5)

Stride: (1, 1)

Convolution Layer 2

Kernel num: 100

Kernel size: (2, 20)

Stride: (2, 1)

Activation: Relu

Max Pool 2
Window size: (1, 5)

Stride: (1, 1)

Fully Connected 1 Size: 1200, Activation: Relu, Dropout: 0.8

Fully Connected 2 Size: 500, Activation: Relu, Dropout: 0.8

Fully Connected 3 Size: 100, Activation: Relu

TABLE VI: Hyperparameters of model.

We present the best hyperparameters of our model that
works online in Table VI. We configure the kernel size of the
first convolution layer as (2, 20). A stride of (2, 1) is used to
capture the correlation between bidirectional timing or sizes.
In the second convolution layer, we use the same kernel and
stride settings to capture the combination of timing and size
features from the input of the previous layer. Our second layer
differs from the work in [48] as we do not correlate multiple
flows in our scenario.

We utilize the Adam optimizer to minimize the loss
function and explore different hyperparameters to optimize
performance. Our evaluation metrics include true positive rate,
false positive rate, accuracy, precision, recall, and F1-score. We
set the learning rate to 0.0001. Regarding the kernel size of the
convolutional layers, we experiment with values of 5, 10, 15,
20, and find that setting both layers’ kernel sizes to 20 yields
the best results. For max pooling, we test sizes of 2, 5, 8, 10,
and determine that a size of 5 produces the optimal result. In

terms of the model’s decision threshold, we evaluate values of
0, 2, 4, 6, 8, 10, and examine various packet window sizes
of 50, 100, 200, 250, 400. We achieve the best performance
with a decision threshold of 2 and a packet window size of 50.
The most effective feature scaling method that works for us
is to multiply the inter-packet delay feature values by 10 and
divide the size feature values by 10. This method outperforms
other scaling techniques, such as Min-max scaling or Z-score
normalization.

APPENDIX B
OBFUSCATED CRYPTOMINING CHARACTERISTICS

We investigate the obfuscation techniques used by different
proxies, drawing implementation details from online documen-
tation in their respective Github repositories. All the proxies
listed in Table III are open-source software.

Proxied traffic characteristics are influenced by the type of
proxy software, its configuration, and the nature of the original
application traffic. The proxy’s presence is transparent to the
application, meaning that even when using identical proxy
software and settings, the resulting traffic varies between ap-
plications. For instance, if an application’s flow predominantly
consists of maximum transmission unit (MTU) sized packets
and the obfuscation policy involves random padding of packets
smaller than MTU, then the output traffic would not differ
significantly. Conversely, for applications with packets smaller
than N bytes, the output traffic will range from N bytes up
to MTU, altering the original traffic and differing from that
of other applications. This principle also applies to obfuscated
mining traffic, where the output characteristics deviate from
both standard mining traffic and other application traffic.

In summary, Non-VPN proxies tend to mainly affect packet
size, whereas VPN proxies more significantly impact packet
number and interval. We compare the differences in packet
number, size, and interval as follows.

Packet Number. VPN protocols introduce additional packets
such as keep-alive and control channel packets, resulting
in noticeable changes in the packet count of the crypto-
mining flow. In contrast, non-VPN proxies employ obfus-
cation techniques that subtly alter the packet count. For
example, the http_simple obfuscation plugin in Shadow-
socksR (SSR) inserts HTTP GET requests and responses to
simulate the HTTP protocol at fixed interval. Similarly, the
tls1.2_ticket_auth plugin in SSR mimics the original
flow as a complete TLS connection, which adds extra hand-
shake packets. These obfuscation techniques can be considered
as specific dummy packet insertion attacks.

Packet Size. Non-VPN proxies commonly employ padding
techniques to defeat length-based and entropy-based traf-
fic analysis. For example, adversaries can utilize SSR’s
protocol_plugin to add random padding in payload, in-
creasing its size to at most 1440B. The VMess protocol
operates similarly, but only adds padding of less than 64B.
In contrast, VPN proxies normally add fixed-length headers
instead of padding to payload. As a result, the exchange of
cryptomining messages can still be identified by observing
unique sized packets within the VPN tunnel, because most
messages can still fit into a single packet.
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Packet Interval. VPN encryption tunnels significantly modify
the packet intervals of cryptomining traffic by introducing
additional control channel packets. In contrast, Non-VPN
proxies typically utilize control channel packets only during
connection establishment. After this initial phase, no further
control packets are added to the transmission.

Unchanged Features. Although non-VPN and VPN proxies
can obfuscate specific traffic features, they cannot entirely
mask the inherent temporal patterns in cryptomining flows.
For instance, a result submission packet is typically followed
by a confirmation packet, and inbound traffic predominantly
consists of job assignment packets occurring at a consistent
frequency. Machine learning models can capitalize on the
regularity of these unaltered features over sequences, enabling
effective detection of even obfuscated cryptomining traffic.

APPENDIX C
ROBUSTNESS ANALYSIS

We utilize the open-source implementations of MineHunter
and IoT-Light. For CJ-Sniffer and Crypto-Aegis, we develop
our own implementations based on the details described in
their original papers. For all the algorithms, we apply recom-
mended configurations in training and test. We analyze the
results shown in Table V.

CJ-Sniffer struggles with traffic obfuscation and perturbations
for two primary reasons. First, its initial rapid filtration phase,
which filters out irrelevant traffic flows by comparing packet
sizes to standard cryptomining flows, fails to detect mining
flows subjected to random padding. Second, the significant
alterations in inter-packet delay caused by both obfuscation
proxies and perturbations render its signature-based solution
less effective.

MineHunter utilizes a coefficient α to calculate the similarity
score for each detection window. However, we find this cal-
culation less reliable in reflecting the intention of arriving a
packet concurrent with block generation in the cryptocurrency
network, as described by its authors, particularly for mining
traffic with low packet frequency. In such scenarios, local
distances does not always significantly shorter than the average
packet delay. This leads to an underestimation of α, resulting in
the misclassification of mining traffic as low-frequency noise.
Interestingly, the introduction of obfuscation and perturbation
does not significantly impact MineHunter’s performance. This
is because MineHunter does not depend on unique packet sizes
within a mining flow, rendering padding attacks ineffective.
Additionally, these attacks primarily reduce packet intervals,
which in turn decrease local distances, inadvertently enhancing
the perceived intention degree.

IoT-Light applies LabelEncode in feature extraction, which
affects its ability to generalize to unseen samples. Specifically,
it fits a LabelEncoder to each feature column and transforms
the feature values into integers. However, this method results
in varying encoding schemes each time the composition of
data samples in the test set changes. For example, introducing
obfuscated mining samples into the test set leads to significant
alterations in the encoded values of existing samples. Conse-
quently, it causes a noticeable drop in performance, particularly
in the precision metric.

Crypto-Aegis utilizes a fixed-size window to calculate the
mean and standard deviation of both packet size and interval,
and it employs a random forest model for learning from
these extracted features. The window slides packet-by-packet
in training and testing. It achieves better accuracy compared
to other algorithms because it also incorporates learning from
sequences. However, it cannot generalize well enough to
unseen traffic samples, such as the obfuscated mining samples
not included in the training data, primarily due to the limited
generalization ability of the applied model. When these new
feature types are incorporated into the learning process, the
accuracy improves accordingly.

MineShark achieves high precision and recall across various
scenarios, attributed to its ability to learn essential mining
characteristics over sequences. It employs a detection window
comprising fifty packets, sliding forward whenever either di-
rection accumulates fifty packets. This sequence length proves
sufficient for recognizing the regularity in the exchange of
mining-specific messages. MineShark stands out as the most
robust solution against the packet splitting, which is particu-
larly challenging for evasion detection.

APPENDIX D
CASE STUDY OF CRYPTOJACKING DETECTION

We demonstrate the detection workflow with a real ex-
ample from our network, as shown in Figure 13. First, the
inference pipeline identified plain-text mining connections
linked to the external address 185.*.*.187, which was added
to the monitoring list. Through domain correlation, the con-
firmation module determined its associated current domain,
djkiss.**.download, to be a subdomain of **.download. It also
identified two associated subdomains, namely api.**.download
and c0me.**.download. By sending probing packets to all
resolved hosts on the same port as used by 185.*.*.187, the
module confirmed additional mining addresses at 104.*.*.66
and 198.*.*.91, both hosting plain-text mining services. Con-
sequently, these two addresses as well as the four domains
were incorporated into the defensive denylist.

Two days after the initial detection, the inference pipeline
detected suspicious encrypted mining connections toward ad-
dress 209.*.*.115, which was subsequently added to the con-
firmation list. However, initial probing attempts received no
response from this address. Given its high rank among suspi-
cious addresses, further correlation analysis were conducted,
which revealed that 209.*.*.115 resolved to the already black-
listed domain **.download. Probing packets were then sent
to service ports previously identified on 85.*.*.187, leading
to responses that confirmed mining service activity associated
with 209.*.*.115. Therefore, it was reported to the operator
along with detection logs. Further investigation uncovered that
the initial probing failure was due to a TLS configuration
error. Once corrected, the discovery of new addresses linked to
**.download and providing encrypted mining services became
more efficient. The module also included the encrypted service
port into probing list. By continually updating the monitoring
list, more mining addresses related to this domain were added
to the defensive denylist, enhancing the security of our net-
work. Meanwhile, features of mining traffic toward confirmed
mining addresses are recorded, which serves as training data
to enhance the accuracy of the detection model.
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Fig. 13: Domain correlation of monitored mining addresses. Dashed nodes represent addresses on the defensive denylist. Solid
nodes indicate confirmed mining addresses, among which red nodes are associated with encrypted mining traffic.
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Fig. 14: Efficiency characteristics of a simple machine learning model in MineShark’s inference pipeline.

Test Case Precision Recall FPR
Baseline 99.0% 99.1% 1.2%

Obfuscated Mining 94.5% 76.2% 1.2%
Enhanced Baseline 93.8% 97.5% 4.8%
Dummy & Padding 16.3% 28.3% 4.8%

Dummy & Padding & Split 13.8% 18.1% 4.8%

TABLE VII: Robustness of SVM.

APPENDIX E
PERFORMANCE TRADE-OFFS

To assess the performance trade-offs of adopting a sim-
pler machine learning model, we replicate the robustness
experiment from Section VII-B for our SVM backup model.
Table VII indicates that the SVM model struggles with gener-
alizing to unseen samples, which is due to the dependence on
statistical features calculated from a group of packets. While
Crypto-Aegis offers greater accuracy, it is not selected as a
backup because its memory requirements exceed the capacity
of our deployment server, given the high volume of concurrent
flows at the gateway. In contrast, the SVM’s time-based sliding
window easily allows for real-time detection.

Despite its limitations in robustness, the simpler machine
learning model demonstrates scalable computation on CPU.
Using the experimental setup from Section VII-D, we assessed
its computational overhead. The results are presented in Fig-
ure 14. We find that the SVM computation scales linearly and
is fully parallelizable across multi-core CPUs. As illustrated
in Figure 14a, the packet throughput increment is in direct
proportion to the number of input queues, but independent
of the detection ratio. The packet throughput peaks at 16.45
Mpps (97.40 Gbps) with seven queues at a 25% detection ratio
(not included in the figure). However, the overall pipeline’s
throughput is ultimately constrained by model inference. As
depicted in Figure 14c, beyond a 50% detection ratio, inference
latency becomes irrespective of queue count, indicating that
each core is operating at maximum capacity. To further en-
hance throughput, we need to increase the number of allocated

cores, which effectively distributes the detection workload.

In practice, deploying the SVM model necessitates at least
four dedicated CPU cores, each handling a distinct pipeline
module: feature extraction, feature inference, IO management,
and time management. Furthermore, we note that the current
model on GPU maintains an average utilization rate of 30%
and occupies around 5 GB of memory. Given these resource
demands, we consider the costs justifiable in light of the
superior performance afforded by deep learning models.

APPENDIX F
ARTIFACT APPENDIX

In this section, we provide information on obtaining the
source code and dataset for MineShark. This artifact is de-
signed for a basic setup compatible with a standard server.
Researchers using this artifact should be able to produce results
related to comparing the robustness of various cryptomining
traffic detection methods (Section VII-B) and assessing the
efficiency characteristics of MineShark’s inference pipeline
(Section VII-D). However, the observation obtained from a
campus gateway (Section VII-C) cannot be directly repro-
duced. To facilitate replication in one’s own network, this
artifact includes the necessary codebase and demonstrates an
end-to-end workflow. Additionally, we discuss customization
options to extend the artifact’s application to broader scenarios.

A. Description & Requirements

1) How to access: The source code and dataset for Mine-
Shark (namely MineShark_AE.tar.gz), including the files
needed to run the evaluation experiments, are available at
https://doi.org/10.5281/zenodo.13624057.

2) Hardware dependencies: No specific hardware is re-
quired. However, we recommend a system with 10 CPU cores
and 16 GB of memory available for the evaluation.
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3) Software dependencies: The following software is re-
quired to run this artifact:

• Linux OS (tested on x86 64 Ubuntu 20.04 LTS)
• Docker (tested on version 20.10.21)
• DPDK version 20.11.6
• Tensorflow C version 2.8.0
• CppFlow Version 2.0.0
• Python ≥ 3.8
• Jupyter Notebook
• MongoDB
• Redis

4) Benchmarks: This artifact includes obfuscated and per-
turbed cryptomining traffic datasets contributed by this work.
For other utilized open-source cryptomining and normal traffic
datasets, as well as code implementations, we provide relevant
pointers. Specifically, this artifact compares the robustness
of MineShark with four state-of-the-art cryptomining traffic
detection systems: CJ-Sniffer [23], MineHunter [14], IoT-
Light [24], and Crypto-Aegis [16]. We use the source code
provided by the original authors for MineHunter and IoT-Light,
and we implement CJ-Sniffer and Crypto-Aegis based on the
descriptions in their respective papers.

B. Artifact Installation & Configuration

First, follow the official guides (https://docs.docker.
com/engine/install/ubuntu/) to install Docker on the
Linux testbed. Then, pull the MineShark image, where soft-
ware environments are configured for running the experiments:
$ sudo docker pull haers/mineshark:AE

Next, download the artifact package using the Zenodo
link. Unzip the package into a directory named AE. Follow
instructions in the AE/README.md to configure the host system
and start the container. This requires mounting the AE path
and huge pages memory appropriately. Inside the container,
follow the instructions in the README.md file under each
experiment* directory to conduct the evaluation.

C. Major Claims

• (C1): MineShark is more robust than state-of-the-art
systems in detecting mining traffic against varying
configurations. This is proven by the experiment (E1),
whose results are reported in Section VII-B (Table V).

• (C2): MineShark performs end-to-end cryptomining
detection with a line-rate inference pipeline and an
automatic confirmation module. This is proven by the
experiment (E2) whose workflow is described in Sec-
tion VI and the effectiveness in real-world deployment
is reported in Section VII-C.

• (C3): MineShark can process traffic with varying
input speeds when allocating different CPU resources.
Moreover, the inference speed is the processing bot-
tleneck. This is proven by the experiment (E3), whose
results are reported in Section VII-D (Figure 12a˜12c).

D. Evaluation

1) Experiment (E1): [Model robustness comparison]
[15 human-minutes + 3 compute-hour]: This experiment

benchmarks MineShark against state-of-the-art cryptomin-
ing traffic detection systems, corresponding to the direc-
tory AE/experiment1. Each compared system has an
associated subdirectory containing the required code and
data. Specifically, there are two Jupyter notebook scripts
(*_baseline.ipynb and *_enhance.ipynb) that execute
the detection algorithm against five test cases: Baseline, Ob-
fuscated Mining, Enhanced Baseline, Dummy & Padding, and
Dummy & Padding & Splitting, as detailed in Section VII-B.

[Preparation] No specific preparation is needed, as ex-
tracted features from raw traffic input are saved into data
files that can be directly loaded for training and testing. We
take this approach because, on one hand, part of the normal
traffic data collected in the campus network is prohibited from
being shared due to a non-disclosure agreement we signed.
On the other hand, feature extraction can be extremely time-
consuming. For example, extracting features for IoT-Light
takes more than twenty-four hours. Instead we provide extrac-
tion scripts (*_extract.py) in each directory for reference.

[Execution] Navigate to the subdirectories of cjsniffer,
minehunter, crypto-aegis, and mineshark. Open the
Jupyter notebooks and execute all the cells. For iot, execute
the python scripts in terminal:
$ python iot_baseline.py
$ python iot_enhance.py

Since training the iot models takes more than 8 hours, we
have configured the scripts to load our pre-trained models
by default. Comment out the loading code to evaluate from
scratch. Additionally, MineShark’s results may vary slightly
across different machines due to the inherent randomness and
non-determinism involved in training deep learning models.

[Results] Compare the evaluated metrics printed on the
console with expected results in experiment1/README.md.

2) Experiment (E2): [End-to-end detection workflow][10
human-minutes + 0.2 compute-hour]: This experiment demon-
strates MineShark’s detection workflow, corresponding to the
directory AE/experiment2. The workflow is briefly described
as follows: The detection pipeline sequentially receives input
packets, which is simulated by looping the replay of recorded
traffic, as if they are coming from a real NIC queue. It extracts
the timestamp and size of each packet to form feature matrices
on a per-flow basis. The extracted features are then inferred
by a trained model. Information on suspicious flows is pushed
to the confirmation module through WebSocket interfaces.
Meanwhile, suspicious flow data is saved on disk.

The confirmation module subscribes to suspicious flow
information and uses MongoDB to establish correlation graphs
for suspicious addresses. It extracts ranking features of sus-
picious flows and scans for keywords in packet payloads
to confirm plain-text mining traffic. After that, it preserves
records of timestamps and sizes of raw traffic information
while deleting original packet files. The confirmation module
further probes flow destinations to check for the presence
of pool mining services. In addition, features of suspicious
addresses are maintained in Redis queues, where the ranking
algorithm can access the latest information at runtime.

[Preparation] Open three container terminals by executing
this command in different terminals on the host:
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$ sudo docker exec -it MineShark_AE bash

[Execution] In the first terminal, launch the director script:
$ ./detector.sh

In the second terminal, start the confirmation module while
the detector is running:
$ ./analyser.sh

In the third terminal, check the database and the ranking
of suspicious addresses during the pipeline execution:
$ python detect_info.py

[Results] The detector displays real-time throughput and
inference statistics, as shown on the left-hand side of
sample_output.png. The analyser displays the confirmation
process of suspicious flows, as shown on the right-hand side of
sample_output.png. After five minutes of execution, exam-
ple documents of the ipinfo and suspicious collections are
shown in ipinfo.json and suspicious.json, respectively.
The output of the suspicious address ranking after five minutes
should include 167.172.7.190:3331 (plain-text) and
120.233.7.227:10443.

3) Experiment (E3): [Efficiency Evaluation][10 human-
minutes + 0.5 compute-hour]: This experiment evaluates the
efficiency of MineShark in feature extraction and model
inference under different CPU resources and identifies
the performance bottleneck, corresponding to the directory
AE/experiment3. A customized version of the detector is
built with an additional -DMONITOR_EXP flag. This flag en-
ables the detector to vary the inference workload at levels
of 25%, 50%, 75%, and 100% by setting different input
parameters. For each workload level, the number of core pairs
allocated for feature extraction and model inference is varied
from one to four. Each case is tested for 2 minutes, totaling
32 minutes to complete the testing of all 16 cases.

[Preparation] Build the detector with the following com-
mands in the current directory:
$ mkdir -p build
$ cd build && cmake .. && make

[Execution] Start the test with this command:
$ python perf.py

[Results] After the completion of the test, the results
will be available in the figures directory. Sample re-
sults on our testbed are shown in sample_extract.png,
sample_inference.png, and sample_throughput.png.
The overall trends should be consistent and align with the
description in Section VII-D.

E. Customization

1) Adjustment of required CPU cores: E3 is configured to
use up to ten CPU cores by default. If running this experiment
on a machine with fewer cores, reduce the que number in the
perf.py script. For details on making this change, see the
Customization section in AE/experiment3/README.md.

2) Acceleration via GPU: To eliminate inference bottle-
necks on the CPU, follow these steps to use GPU acceleration.

First, install the NVIDIA Container Toolkit (https:
//docs.nvidia.com/datacenter/cloud-native/
container-toolkit/latest/install-guide.html).

Second, launch the container with GPUs as follows:
$ sudo docker run -it --gpus all \
--privileged -v <Hugepage_Path>:/mnt/huge \
-v <MineShark_AE_Code_Path>:/root/AE \
-w /root/AE -e IOVA_MODE=va \
--name MineShark_AE haers/mineshark:AE

Third, execute the previous experiments in container with
no changes while monitoring the GPU usage with the follow-
ing command on the host machine:
$ watch -n1 nvidia-smi

Execution results of E3 should match Figure 12d in our paper.

3) Deployment in one’s own network: Researchers can
reuse E2’s workflow to analyze traffic of interest in their own
networks using a collected packet file. Additionally, they can
deploy the system for live network traffic monitoring after
setting up the drivers for the network interface to be monitored
and configuring the detection file. For details, see the Scope
and Customization section in AE/README.md.

4) Extend to new models and tasks: This artifact can be
customized for new models and tasks. Researchers should
implement new functions in the detection pipeline to define
the feature extraction process required by the target model
and the feature calculation process with the model. For other
classification tasks, in addition to adapting the model-specific
changes, the confirmation mechanism will also need to be
redesigned. For details on aligning these changes with specific
code segments, see the Scope and Customization section
in AE/README.md.
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