
MemCloak: Practical Access Obfuscation for Untrusted Memory
Weixin Liang

Zhejiang University
Kai Bu∗

Zhejiang University
Ke Li

Zhejiang University

Jinhong Li
Zhejiang University

Arya Tavakoli
Simon Fraser University

ABSTRACT
Access patterns over untrusted memory have long been exploited to
infer sensitive information like program types or even secret keys.
Most existing obfuscation solutions hide real memory accesses
among a sufficiently large number of dummy memory accesses.
Such solutions lead to a heavy communication overhead and more
often apply to the client/server scenario instead of the CPU/memory
architecture. Sporadic obfuscation solutions strive for an affordable
memory bandwidth cost at the expense of security degradation. For
example, they may have to obfuscate accesses over a limited range
of memory space to control the overhead.

In this paper, we presentMemCloak to obfuscate accesses through-
out the entire memory space with anO(1) communication overhead.
We advocate leveraging data redundancy to achieve extremely ef-
ficient obfuscation. Loading multiple duplicates of a data block in
memory, MemCloak enables the CPU to fetch the same data by
accessing different memory locations. This breaks the condition
for snooping the access pattern. Moreover, we leverage data ag-
gregation to improve memory utilization. It enables the CPU to
fetch the same aggregated data block times from the same mem-
ory location but each time for a different data block therein. This
further prohibits an attacker from correlating memory accesses.
We propose a series of optimization techniques to compress the
position that tracks memory layout. The optimized position map
is hundreds of times smaller than the traditional position map. It
takes only several megabytes for protecting a 4 GB memory and
can fit in an on-chip cache or buffer. We implement MemCloak
using the gem5 simulator and validate its performance using highly
memory-intensive MiBench benchmarks.

CCS CONCEPTS
• Security and privacy → Hardware security implementa-
tion; Hardware-based security protocols;

KEYWORDS
Access pattern obfuscation, Oblivious RAM, side-channel attack

∗Corresponding Author: kaibu@zju.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274695

ACM Reference Format:
Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli. 2018. Mem-
Cloak: Practical Access Obfuscation for Untrusted Memory. In 2018 An-
nual Computer Security Applications Conference (ACSAC ’18), December
3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3274694.3274695

1 INTRODUCTION
The pattern of memory accesses has long been exploited for side-
channel attacks. Specifically, the pattern refers to the sequence
of addresses accessed during program execution [18]. It can be
used to construct the control flow graph (CFG) of a program [3].
An extensive measurement study demonstrates the uniqueness of
CFGs across different programs [46]. For example, among 1,334
procedures of Alpha compiler’s Standard C library, only 0.05% of
all possible pairs of their CFG match for procedures with 15 or
more blocks. An attacker can thus monitor a program’s memory
access pattern, construct the corresponding CFG, and then identify
exactly which program is running. If a CFG reveals a cryptographic
function in use, the attacker may even compromise the secret key
[25, 46]. For example, Diffie-Hellman [12] and RSA [28] involves
a loop of conditional branches using the value of each bit of the
secret key for condition check [46]. A bit one directs the program
execution to an IF-branch code segment while a bit zero to an ELSE-
branch code segment. Using the snooped CFG, the attacker can
easily infer two possible secret keys—one is the secret key per se
and the other is its complement.

However, how to obfuscate accesses for untrusted memory in a
practically efficient way remains unsolved. Different from emerging
trusted memory capable of cryptographic computation [2, 5, 31],
widely-deployed conventional untrusted memory1 cannot perform
computation and the addresses sent to memory have to remain
in plain text. A fundamental obfuscation technique called Oblivi-
ous RAM (ORAM) [18] therefore hides a real access among many
dummy accesses. Apparently, ORAM imposes a high communica-
tion overhead on memory bandwidth and gains few practical imple-
mentations in the CPU/memory scenario. With the recent blossom
of cloud computing where network bandwidth might be of less
concern, ORAM gradually applies more to obfuscating data-access
patterns on a remote server and attracts many improvements in the
client/server scenario [8, 10, 11, 13, 15, 18, 26, 27, 34, 37, 38, 42, 43].
Sporadic attempts at the CPU/memory scenario trade security for
efficiency [24, 40, 45, 46]. For example, HIDE [46] needs to fetch
all blocks in the same chunk (i.e., one or more continuous pages)
of a previously fetched and cached block. Then it permutes block
locations within the chunk, records the new block-address mapping

1For ease of presentation, we hereafter use the terms of untrusted memory andmemory
interchangeably whenever no confusion arises.

https://doi.org/10.1145/3274694.3274695
https://doi.org/10.1145/3274694.3274695
https://doi.org/10.1145/3274694.3274695

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli

in the position map, and writes all blocks back to memory. HIDE
has to limit the overhead by confining the obfuscation to only a
small range of the memory space.

In this paper, we take the challenge and present the design and
implementation of MemCloak. It obfuscates accesses for untrusted
memory with an O(1) communication overhead and an on-chip
cacheable/bufferable position map. We achieve such a minimum
communication overhead by leveraging data redundancy. The root
cause for leaking the access pattern is that currently the CPU al-
ways accesses the same memory location for fetching the same
data block therein. If we can enable the CPU to access different
locations for the same block, access pattern leakage is avoided. To
this end, the data redundancy technique we propose loads multiple
differently-encrypted copies of each block in memory. We leverage
data aggregation to improve memory utilization. The data aggre-
gation technique XORs multiple data blocks into one. When all
but one of the blocks inside the aggregate are already fetched and
cached, the CPU can fetch the aggregate and extract the remaining
block therein by lightweight XOR computation. With both data
redundancy and data aggregation techniques, the CPU can fetch the
same block by accessing different memory locations and access the
same memory location for fetching different blocks. This prohibits
an attacker from correlating memory accesses and thus protects
the access pattern.

We further propose a series of optimization techniques to com-
press the size of the position map over hundreds of times. We use
computation-based address mapping to remove the destination
addresses from the position map. We also remove keys (for data
encryption/decryption) from the position map by deriving them
from the addresses on the fly. Given that one key reason for the
possibly giant map size is that it dedicates an entry for each block,
we restructure the position map in a page-level fashion and each
page-oriented entry maintains much less information for blocks in
that page. Another challenge arises when we replenish new data
duplicates by piggybacking them in dummy writes. Each read ac-
cess should be associated with a dummy write and vice versa to
protect the access type (i.e., read or write) [5]. If we simply find a
feasible computation function that can map a new duplicate to an
empty location, we have to deal with frequent address collisions
and cumbersome map update. We address this challenge by using
another address as an address’s mapping alias. This way, we can
randomly map an address across the entire memory space without
heavy re-computation. Based on the preceding optimization tech-
niques, MemCloak can compress a 1 GB traditional position map
to a several-megabyte one, practically fittable in an on-chip cache.

In summary, we make the following contributions to obfuscating
accesses over untrusted memory.

• Obfuscate memory accesses with a minimum O(1) communi-
cation overhead (Section 3). The proposed techniques of data
redundancy and data aggregation break access correlation
by enabling the CPU to access the same data from different
locations and to access the same location for different data.

• Compress the traditional position map over hundreds of
times to fit in an on-chip cache or buffer (Section 4).

• Implement MemCloak using gem5 [7], a widely used sim-
ulator for computer architecture research (Section 5). Our

CPU

Cache

MC

Address Bus

Data Bus

Information Leakage

Plain Text Encrypted Data

MemoryTCB

Figure 1: Side-channel attack over memory access patterns
[36]. The CPU, cache, andmemory controller (MC) reside in
a trusted computing base (TCB). A passive attacker snoops
both the plain-text address bus and the encrypted data bus
to infer the pattern of memory accesses.

modification accounts for 2,000+ lines of C/C++ code over
gem5’s 250K lines. We execute MemCloak over three highly
memory-intensive benchmarks—dijkstra, susan, and jpeg
encode—from the MiBench benchmark suite [19] (Section 6).
The results demonstrate that MemCloak can nearly random-
ize access patterns with a minimized overhead.

2 PROBLEM
In this section, we raise a question about the practicality of how
to efficiently obfuscate access patterns over untrusted memories.
We first review known side-channel attacks over memory accesses.
Existing countermeasures introduce many more dummy accesses
to hide a real access, leading to a high overhead.

2.1 Side-Channel Attack over Memory Accesses
The pattern of memory accesses (i.e., the sequence of addresses) has
long been exploited for side-channel attacks. As shown in Figure 1,
while CPU and memory chips are secure, both the address bus (for
the CPU to transmit a memory address to the memory) and the
data bus (for data transmission between the CPU and memory) are
vulnerable to eavesdropping attacks. Shielding the data bus from
eavesdropping attacks simply requires data encryption [4, 9, 17, 22,
32, 35, 39, 41]. Such a cryptographic protection, however, fails to
harden the address bus. This is because traditional memory chips do
not support cryptographic computation. Addresses sent to memory
have to remain in plain text [31]. An attacker can easily discover
memory access patterns and exploit them for side-channel attacks.
Such attacks may reveal the reused code of a running program [46]
or even secret keys of AES encryption [25].

The first example attack uses memory access patterns to infer
what program is running. This is achieved by control-flow graph
(CFG) matching [46]. A CFG graphically represents all paths that
might be traversed through a program during its execution [3].
Zhuang et al. conducted an extensive measurement and demon-
strated that most programs have a unique CFG [46]. Take, for ex-
ample, the Standard C library of the Alpha compiler including 1,334
procedures, each with at least 5 blocks. When comparing all pos-
sible pairs of CFGs generated for all these procedures, only 5% of
the comparisons match. The more blocks a procedure has, the less
likely its CFG matches with that of other procedures. For example,
only 0.1% of the comparisons match for procedures with 10 or more
blocks. The number drops to 0.05% if the comparisons focus on

MemCloak: Practical Access Obfuscation for Untrusted Memory ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

only procedures with at least 15 blocks. Leveraging this property
of CFG uniqueness, an attacker can passively monitor the address
bus, detect jumps upon accesses to discontinuous locations, and
construct the CFG. Once the constructed CFG matches with that of
a procedure in standard libraries, the attacker identifies the running
program with a high probability.

Even worse, memory access patterns may leak critical data such
as secret keys [25, 46]. Zhuang et al. [46] use the private-key op-
erations of Diffie-Hellman [12] and RSA [28] for example. Such
operations involve a loop of conditional branches using the value
of each bit of the secret key for condition check. A bit one directs
the program execution to an IF-branch code segment while a bit
zero to an ELSE-branch code segment. Given that an attacker can
identify such operations through CFG matching [46], it can further
infer from the observed CFG that which bits of the secret key are
identical. Although the attacker cannot distinguish between the
IF-branch and ELSE-branch code segments, it can determine two
values using the observed CFG—one is the secret key per se and the
other is its complement. A little more efforts like exercising these
two values over snooped encrypted data will help the attacker nail
down the exact secret key.

2.2 Burdensome Obfuscation of Access Pattern
Obfuscation solutions for untrusted memory usually base them-
selves on ORAM technique. ORAM associates with a high overhead
as it protects the access pattern through hiding a real access among
a sufficiently large number of dummy accesses [18]. Following
ORAM, the CPU sends to memory a number of addresses including
the one of the real interest. Memory then responds with data blocks
stored on the received addresses. Note that each data block should
be encrypted before being loaded into memory. Otherwise, data
correlation leaks memory access patterns. After the CPU receives
these encrypted data blocks, it first decrypts the interested one and
then operates on it. To invalidate the correlation of two accesses
to the same location, the CPU shuffles the addresses of received
data blocks, re-encrypts each of them, and writes the re-encrypted
data back to the corresponding locations. Intuitively, fetching all
n data blocks in the entire memory upon each memory access
promises the most secure obfuscation. However, this incurs a high
communication overhead of O(n).

The major design technique toward efficient ORAM is modeling
memory layout with a certain structure for ease of hiding where
fetched data blocks are written back. For example, ORAM uses a
hierarchical structure to achieve an O(polylog n) communication
overhead [18] while Path ORAM uses a tree structure to achieve an
O(log3 n) overhead [34]. The state-of-the-art Floram uses dual mem-
ory chips to achieve an O(logn) overhead [13]. We refer interested
readers to Floram [13] for a comprehensive review of ORAM evolve-
ment [10, 11, 15, 18, 26, 27, 34, 37, 38, 42, 43] and to SEAL-ORAM
[8] for an experimental evaluation of typical ORAM solutions for
remote access of cloud data.

No matter how efficient an ORAM-based solution can be, it has
to impose a sufficiently large number of dummy accesses to hide the
access pattern. This is why ORAM solutions have been considered
more practical to a server-client environment such as remote access
of cloud data [8, 36] instead of the CPU-memory communication
as in Figure 1. It is also worth mentioning that, Path ORAM [34],

as the base of many ORAM solutions, needs to store many dummy
blocks in memory to mitigate system deadlocks when reshuffling
cannot proceed because all buckets along a tree path are full. Even
if wasting 50% of memory capacity for storing dummy blocks (i.e.,
100% memory overhead), system deadlocks can still occur.

2.3 Toward Practically Efficient Obfuscation
In this paper, we take on the challenge of obfuscating memory
access patterns with an O(1) communication overhead. This low
overhead is essential for protecting CPU-memory communication
in a practically efficient way. Ideally, we expect that an extremely
efficient obfuscation solution require zero additional memory ac-
cess. That is, for each read request, the solution still simply lets the
CPU send the read address to memory and then let memory send
back the corresponding data. Similarly, for each write request, the
CPU sends both the write address and the corresponding data to
memory. A memory access operation thus requires two commu-
nication messages, one on the address bus and the other on the
data bus. Without further protection, however, a memory request
can easily leak the type (i.e., read or write) that might be leveraged
for improving attacking probability. Therefore, most previous ob-
fuscation solutions for either untrusted memory [34] or trusted
memory [5] use a different-type dummy request to hide the type
information. Specifically, each memory request should be at least
transformed to a pair of read-then-write requests [5]. If the original
request is a read, it is followed by a dummy write. Otherwise, it is
preceded by a dummy read. Taking type protection into account,
an obfuscation solution thus introduces a communication over-
head lower bounded by O(1). The minimum would be only one
additional dummy request with two communication messages.

Although the above minimum is achievable on trusted mem-
ory because of the support of encrypted addresses [5], it is never
practically achieved on untrusted memory [13]. Sporadic initial
attempts strive for this goal via mounting an additional hardware
buffer to the CPU chip [24, 40, 45, 46]. We observe that they are
associated with high communication overhead and even security
degradation. For example, HIDE [46] buffers all blocks fetched from
memory. Whenever a block need be evicted from the buffer or
written back to memory, HIDE needs to 1) fetch all blocks in the
same chunk (usually containing one or more continuous pages)
with the block to the CPU chip, 2) permute all blocks to different
locations within this chunk, 3) record the new block-address map-
ping, and 4) write all permuted blocks back to memory. Otherwise,
if, as usual, a block is read into the buffer and then evicted, the
subsequent use of the block will access the same memory location
and leak the access pattern. HIDE efficiency can be improved by
mixing the permutation with the read accesses [45]. The idea is
that after some read access, a buffered block can be written back
to the location of the just read block. This way, block permutation
is achieved without much expensive transmission of blocks in a
large chunk. Security guarantee of this idea, however, requires a
sufficiently large buffer size. Consider an extreme case with a buffer
of size one and a recursive accesses of two memory locations l1 and
l2. The access sequence would be (l1, l2, l2, l2...). This enables an
attacker to infer two possible real access patterns—(l1, l2, l2, l2...)
and (l1, l2, l1, l2...)—with the latter one exactly matching the real
access pattern.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli

3 OVERVIEW
In this section, we present MemCloak, the first practical obfuscation
solution for protecting access patterns over untrusted memory with
an O(1) communication overhead. The major idea of MemCloak is
leveraging data redundancy to reinvigorate dummy accesses and
dummy blocks, which otherwise are the main source of bandwidth
waste and memory waste, respectively.

3.1 Motivation
Essentially, if we could fetch the same data from different loca-
tions and the data are differently-encrypted on each location, the
access pattern would not be leaked. This instantly motivates us
to leverage data redundancy. Current memory is usually used to
accommodate one copy per data block therein. Repetitive accesses
on the same location for the same data easily leak the access pattern.
It is also easily correlated if we simply write the fetched data back
to a different location and read it from that location afterwards.
Therefore, previous obfuscation solutions have to introduce dummy
accesses to hide a real access. This leads to an intrinsically high
overhead on both the address and data buses. They may also further
introduce dummy blocks (e.g., across 50% of the memory space)
to mitigate system deadlocks [13]. In contrast, we use the space
otherwise taken by dummy blocks more wisely. We reinvigorate
dummy blocks by filling them with duplicate data. This little twist
yields a significant decrease in communication overhead. Using no
dummy requests, we can simply fetch the same data from two or
more different locations without revealing the access pattern.

Let us use an example to quantify how data redundancy promises
a significant efficiency improvement over previous obfuscation so-
lutions. For ease of understanding, we in this example consider
repetitive read accesses to only one data block among n memory
locations. We temporarily do not consider protecting the access
type (i.e., read or write) either. A more comprehensive MemCloak
design involving write accesses and type protection will be pre-
sented shortly. Since only one data block is concerned, we can create
n differently-encrypted copies of it and load them into memory.
Making the example more challenging, we assume that there is no
cache to buffer fetched data. Then every time the CPU needs to
operate on the data, it has to access memory. Given a differently-
encrypted copy at each memory location, the CPU can read the
data block up to n times without repetitive accesses to the same
location. This way, MemCloak protects the access pattern with zero
communication overhead. In contrast, existing obfuscation solu-
tions might store only one copy of the data block and use the other
n − 1 locations for storing dummy blocks. For each memory access,
the state-of-the-art solution imposes a communication overhead of
O(logn) dummy accesses [13]. Furthermore, the CPU needs to re-
encrypt some or all of the fetched data blocks and write them back
to different memory locations than where they are fetched. The gap
between the overhead of MemCloak and that of the state-of-the-art
solutions demonstrates a promising leap in efficiency.

3.2 Challenge
However, we cannot efficiently implement MemCloak without ad-
dressing a series of challenges. Key challenges include how to im-
prove memory utilization while duplicating data, how to compress

the position map while providing one-to-many mappings, and how
to replenish duplicate data while serving continuous accesses.
Memory utilization. Intuitively, the more duplicates we associate
with a data block, the more consecutive accesses to different du-
plicates we can use to get the data block without accessing any
location more than once. More duplicates per data block, however,
waste more memory space. One may consider this memory over-
head as a necessary tradeoff for securing access patterns, especially
given the extremely efficient O(1) communication it promises. But
to encourage the deployment of MemCloak, we should make every
effort to improve memory utilization.
Position-map compression. Obfuscation solutions require a po-
sition map to track data placement in memory. For each entry in the
position map, two key fields should specify what metadata to iden-
tify a data block and which data blocks to fetch alongside for access
obfuscation. Take the tree-based ORAM for example [34]. These
two fields are a block index to identify the requested data block and
a path index to specify on which tree-path all data blocks therein
should be fetched, respectively. While to our CPU-memory scenario
as in Figure 1, a position map should maintain address mappings,
each linking one virtual address to multiple physical addresses. To
construct such a position map, one may suggest simply extending
the page table where originally contains only one-to-one mappings.
Consider an entry mapping virtual address l0v to physical address
l0p for example. Assume that MemCloak loadsm − 1 more copies of
the data currently located at l0p to locations l ip (1 ≤ i ≤ m− 1). Then
we can accordingly addm − 1 more entries to the page table. Each
added entry maps l0v to a different l ip . Once after an entry has been
used as a reference for memory access, it should be invalidated or
deleted to avoid repetitive references and access pattern leakage.
This leads to frequent modification of the page table. Furthermore,
invalidating or deleting the referenced entry means that we cannot
buffer it in the TLB and its corresponding data block in the cache.
All the above limitations suggest that MemCloak may not simply
extend the page table as the position map.

Creating an independent position map faces challenges as well.
First, it demands space. Given that each entry in it maps to a differ-
ent physical address, the required space can be upper bounded by
the number n of memory locations. The position map thus can be
as large as the page table. Second, it should not affect the efficiency
provided by the TLB and caches. This requires that the position map
be a transparent layer between the last-level cache and memory.
Data replenishment.Given a numberd of duplicate blocks loaded
in memory, we can fetch this block up to d times without repetitive
access on the same location. We need to replenish more duplicates
to serve the (d + 1)th access and those afterwards. Otherwise, repet-
itive accesses over some memory locations will appear and leak the
access pattern. A possible replenishment strategy followsHIDE [46].
That is, we fetch a number of blocks from memory to the CPU chip,
permute/shuffle their locations, and then write them back to the
newly assigned locations. This strategy costs CPU time and induces
communication overhead. Then one may suggest periodically load-
ing more duplicate blocks from the disk via I/O. However, both
strategies need to halt memory accesses while replenishing blocks.
We expect an efficient replenishment alongside accessing memory
as in [24, 40, 45, 46] without its dependence on a large buffer.

MemCloak: Practical Access Obfuscation for Untrusted Memory ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

3.3 Methodology
MemCloak addresses the preceding challenges by three lightweight
techniques presented in this paper. First, we use XOR to aggregate
data blocks to improve memory utilization. Second, we use compu-
tation based address mapping to eliminate destination addresses in
the position map. Third, we reinvigorate dummy writes required
for protecting the access type to piggyback data replenishment.
Memory utilization: XOR in memory. We use XOR-based data
aggregation to save memory space without reducing duplicates.
Consider a motivating example that needs to load two duplicates
for both block a and block b. Originally, this invokes four memory
allocations, two for block a and the other two for block b. Using
XOR, we use only three blocks—a, b, and a ⊕ b—to represent the
information of four blocks. After a is fetched and cached, the CPU
can access either b or a ⊕ b for fetching b. Such a data aggregation
actually promises more than memory efficiency. It enables the CPU
to fetch the same data from different locations and fetch differ-
ent data from the same location. This significantly discourages an
attacker from inferring the access pattern.
Position-map compression:Map addresses on thefly.Wemap
a requested address to one of the duplicates on the fly. The position
map no longer stores all mappings from one address to multiple
duplicates. Instead, it stores source addresses and the functions that
are used to compute the destination addresses for duplicates. Since
functions can be shared by all source addresses, each entry in the
position map uses only function indices. We can thus avoid repeat-
ing source addresses and remove destination addresses toward a
highly compact position map.
Data replenishment: Piggyback new duplicates in dummy
writes. Inspired by [45], we replenish new duplicates and reshuffle
address mappings using dummy writes that otherwise contain only
dummy data for protecting the access type. Specifically, we fill a
dummywrite with a duplicate. Where in memory to put the dummy
write imposes another challenge. We cannot simply write the new
duplicate back to the location that has just been read as in [45].
That location may store an XORed block, which still can serve sub-
sequent accesses for different data requests. We cannot arbitrarily
compute a new location. First, this demands a sufficiently large
number of functions to make sure that an address can be mapped
to many addresses. Second, the newly computed location might be
currently occupied by another data block. We cannot simply select
an empty location either. This introduces destination addresses
back to the position map and refrains the efficiency improvement
by computation-based address mapping. We propose using another
address as an address’s mapping alias. Then an address can use its
mapping alias’s destination addresses. By careful control of alias
selection, we randomly map each address across the entire memory
space without cumbersome management of the position map.

4 DESIGN
In this section, we detail the MemCloak design. MemCloak logics
only reside in the memory controller, serving as a transparent layer
between the last-level cache and memory, without modification
to the operating system, programs, page table, and TLB. The key
challenge is how to optimize the size of the position map while
securing access obfuscation. We propose a series of optimization

Hash Unit

Stash

Position Map Write Buffer

Encryption/Decryption Unit

Address

Computation

Logic

mapped

address

encrypted

data

mapped

address

map query

& update

mapped

address

decrypted

data

requested address

en
cr

y
p

te
d

d
at

a

decrypted block

Figure 2: MemCloak architecture in the memory controller.

techniques to compress the traditional position map by hundreds
of times. The result position map takes only several megabytes and
can be practically fitted into a cache or buffer.

4.1 Architecture
As with existing memory access obfuscation solutions, we imple-
ment MemCloak logics in the memory controller as a transparent
layer between the last-level cache and memory. The CPU need not
beware of the address manipulation by MemCloak. It simply fol-
lows the original memory access scheme that sends out a memory
request to the first-level cache. The memory request fetches the
requested data block to registers upon cache hits and is cascaded
to lower-level caches upon cache misses. If the memory request
still encounters a cache miss on the last-level cache, it is directed to
the memory controller, where MemCloak obfuscation is enforced
before re-directing it to memory. (Note that the initial memory
request uses a virtual address, which should be translated to a phys-
ical address on a certain level of cache before entering the memory
controller.) A key component for MemCloak obfuscation is the posi-
tion map. It maps the requested physical address to more than one
physical addresses holding different encrypted copies of the same
data block. Once a data block is fetched from memory, the memory
controller decrypts it and feeds the plain-text data block back to the
CPU. If the data block will be cached, the memory controller also
needs to update its address field to the original requested physical
address. Otherwise, subsequent requests to that physical address
will encounter cache misses even though the requested data block
is cached. Moreover, the address update further avoids modification
over the page table.

We present the architecture of the memory controller by Mem-
Cloak in Figure 2. When the computer system loads data blocks
from the disk to memory via I/O operations, it initializes each
data block with multiple different encrypted copies. Some of these
copies may be XORed into aggregated blocks. We can adopt ex-
isting techniques such as prefetching for compensating memory
access delay. The position map tracks all the key information for
extracting the original data, such as where it locates in memory,
how it is encrypted, and which other data it might be XORed with.
Besides the position map, an obfuscation solution needs also a stash
buffer to temporarily store some recently fetched data blocks. If
the requested data block can be found in the stash, it is directly
transmitted to the CPU. Otherwise, memory access will take place
by first looking up the position map for determining which physi-
cal address to access. This process may involve some lightweight
computation using the address computation unit and hash units. To

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli

(a) traditional position map: 1 GB

(b) compressed position map: 6.25 MB

2
2
6
 e

n
tr

ie
s

secret key

16

mapped address

16

secret key

1

mapped address

1

64 bits 64 bits

2,048 bits

hash

index

1

hash

index

16

mapping

alias

1

mapping

alias

2

counter1

counter2

1

counter1

counter2

64

10 bits 64 bits 64 bits 8 bits

800 bits

2
1

6
 e

n
tr

ie
s

Figure 3: Comparison of (a) the traditional positionmap and
(b) theMemCloak-compressed positionmap under example
settings of 64-bit physical addresses, 64-bit secret keys)[2],
64-byte data blocks, 4 KB pages, and 4 GB memory. Mem-
Cloak employs h = 1, 024 hash functions for address com-
putation and assign c = 16 copies per block. We provide the
structure of only one map entry for simplicity.

guarantee data consistency, we search the write buffer for data with
the calculated physical address before accessing memory. Once the
requested data block is read from the write buffer or memory, it is
decrypted by the encryption/decryption unit. Then the plain-text
data block is transmitted to the stash as well as the CPU. Since
accessing the same memory location for fetching the same data
leaks the access pattern, we need to reshuffle data placement to
avoid such repetitive accesses. This is done by replenishing newly
encrypted copies to carefully selected memory locations. The posi-
tion map should also be accordingly updated such that subsequent
requests can find the correct data.

4.2 Position Map Compression
We first analyze the structure and maintenance cost of a traditional
position map. Then we propose how MemCloak compresses the po-
sition map step by step. Alongside, we present key design principles
of MemCloak. For ease of understanding and comparing efficiency
gains yielded by each design technique, we in Figure 3 illustrate
the traditional map as well as our compressed version.
The giant traditional position map. Following the traditional
structure, each entry in a feasible position map for MemCloak
should contain at least a requested physical address, a mapping
physical address where locates an encrypted copy of the requested
data block, and the decryption key for decrypting the encrypted
copy. Let laddr and lkey denote the length in bits of a physical address
and a key, respectively. The size of each entry is 2laddr + lkey. Using
entry indices to represent source addresses, the size of each entry
is shrunk to laddr + lkey. Given that the number of entries is upper
bounded by the number n of blocks the memory can accommodate,
the size of the position table approximates (laddr + lkey)n bits. To
guarantee security, lkey should be sufficiently large enough. Inspired
by [2], we can use a global private key for all entries and a shorter
counter for each entry. Both the private key and counter are used
for decrypting an encrypted block. But each entry only needs to
track its corresponding counter. Consider a practical example with
64-bit physical addresses, 64-bit counters [2], 64-byte data blocks,
and 4 GB memory. The number of blocks supported by the memory

is n = 4 GB
64 B = 226. The corresponding position map then takes a

size of (64+ 64) × 226 bits = 1 GB. This is impractically large for the
memory controller to cache or buffer.
Compression technique 1: Computation-based addressmap-
ping. Using lightweight computation to map source addresses to
destination addresses, we can combine multiple entries into one
and remove destination addresses from the position map. In the
current design, we adopt hashing for computing destination ad-
dresses. To optimize the cost for implementing hash functions,
we do not need to implement totally different hash functions. We
can simply implement a limited number or even only one hash
function and use a different seed for each instance. Let h denote
the number of hash functions/instances and c denote the aver-
age number of copies per block. Then we can combine the c en-
tries corresponding to the same block in the original position map
into one with c fields. Each field contains the index of the hash
function used for computing the destination address and the key
used for decrypting data therein. The size of each entry is then
(lhash + lkey)c , where we have lhash = logh as the length of a hash-
function index. The size of the compressed position map becomes
(lhash + lkey)c ×

n
c = (lhash + lkey)n = (logh + lkey)n. This promises

a smaller position map as long as we have logh < laddr. We observe
that logh = laddr when the number of hash functions is equal to
264 in a 64-bit addressed system. Given that each block associates
with a limited number of copies, we do not need that many hash
functions to map these copies to different addresses. Moreover, a
uniform hash function can evenly map different inputs across the
entire memory space. We thus do not need many hash functions
to arbitrate address collisions either. Based on these observations,
we expect that the computation-based address mapping technique
yield a much smaller position map.
Compression technique 2: Address-derived decryption keys.
Leveraging the uniqueness of destination addresses, we derive de-
cryption keys from addresses on the fly in the encryption/decryption
unit. We can thus remove keys from the position map and further
compress its size. Note that the usage of addresses should be limited
to key derivation. Addresses should not be directly tweaked into
the messages sent to the memory. Otherwise, keys are vulnera-
ble to inference due to chosen-plaintext attacks and cipher block
move attacks [14]. Now each entry in the position map contains
only c indices of hash functions, taking a size of c logh. When
c logh > h, we can replace each entry with a bit vector of length
h. We set the ith bit as 1 if the address computed by the ith hash
function accommodates a copy, and set it as 0 otherwise. Using this
technique, the size of the compressed position map approximates
min{c logh,h} × n

c = min{n logh, nhc }.
Compression technique 3: Circular-based page-level address
mapping. Although the preceding compression techniques can
greatly decrease the size of the position map, they still have to deal
with the very large coefficient n. Remember that in the previous
example with 64-bytes blocks in 4 GB memory, we have the number
of supported blocks up ton = 4 GB

64 byte = 226. Even though each block
contributes 1 bit to the position map, the coefficient n will lead to a
component of 226 bits = 8 MB. Inspired by the virtually tagged and
physically indexed technique used for structuring a page table, we
propose structuring the position map based on page-level address

MemCloak: Practical Access Obfuscation for Untrusted Memory ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

mapping instead of the preceding block-level based one. Given a
source address, we feed only its page index to the chosen hash
function to compute the page index of the destination address. This
makes the number of entries upper bounded by the number of
pages instead of the number of blocks. How we use the block offset
to locate a data block within a page also matters. If we simply
equate the block offsets in the source and destination addresses
as the virtually tagged and physically indexed technique does, an
attacker can still possibly correlate two memory accesses and infer
the access pattern. We address this concern using a circular-based
in-page mapping technique. Let lpage and lblock represent the size
of a page and the size of a block, respectively. Then the number of
blocks in a page is lpage

lblock
. Let s denote the seed of the chosen hash

function for mapping the page index. The circular-based in-page
mapping computes the block offset of the destination address as
bdst = (bsrc + s) mod lpage

lblock
, where bsrc represents the block offset

in the source address. This way, the same block offset might be
mapped to a different block off set in different pages and therefore
breaks correlation.

However, another challenge arises upon invalidating accessed
addresses. According to the page-level address mapping, all the
blocks in a page use the same hash function for mapping them to
a different page. After a block accesses the address computed by
the hash function, that address should be invalidated from future
accesses for the same block. This leads to invalidating the hash-
function index just used for address computation. Invalidating a
hash-function index means that subsequent memory requests corre-
sponding to this entry cannot use it for address mapping. However,
besides the just accessed block, all the other blocks in the same page
have not been accessed. Invalidating unaccessed blocks degrades
performance as we have to load many more data blocks in memory
than what are actually used.

Against the preceding challenge, we have to re-introduce block-
level information back to each entry but in an efficient way. What
each block needs to track is which hash functions have been used
and invalidated. Remember that all blocks in the same page use
the same set of hash functions. This observation motivates us to
more compactly encode the hash-function tracking for each block,
without repeating all hash-function indices for each block. The idea
is to introduce a vector v for each entry. The vector contains lpage

lblock
items. Item v[i] corresponds to the ith block in the page. With a
size of log c bits, item v[i] aims to track how many hash functions
out of c choices have already been used by the ith block for address
mapping. Formally speaking, v[i] = k means that the ith block
has accessed k addresses computed by the first k hash functions
indexed in this entry. These used hash functions are invalidated
from future use by the ith block. The next request for the ith block
will use the (k + 1)th hash function for address mapping. Based
on this design, each block maintains only a log c-bit counter up to
the value of c . While in the original block-level position map, each
block maintains c hash-function indices. Position-map size can thus
be further reduced.

We now analyze the position-map size after using circular-based
page-level address mapping. Each entry now maintains c indices of
hash functions as well as a vector of lpage

lblock
items. It takes a size of

c logh + lpage
lblock

log c . Given that we map a block to c copies, then n
c

original blocks can be accommodated by memory. The number of
original page, that is, the number of entries in the position map, is
therefore n

c /
lpage
lblock

. Then the size of the position map approximates

(c logh + lpage
lblock

log c) × n
c /

lpage
lblock

= (
lblock
lpage

logh + log c
c)n. Now let us

compare this size with that of the giant 1 GB traditional position
map under the scenario of 64-bit physical addresses, 64-bit counters
[2], 64-byte data blocks, 4 KB pages, and 4 GB memory. In this case,
the number of blocks in a page is lpage

lblock
= 64. Then the ratio of the

size of the giant traditional position map to that of the compressed
position map is 128

logh
64 +

log c
c

. It is straightforward that this ratio can be

easily greater than 100 with practical settings of h and c . Take h =
1, 024 and c = 16 for example. We have 128

logh
64 +

log c
c

= 128
log 1024

64 +
log 16
16
=

315. It indicates that our compressed position map have an over
300x smaller size, which is about (log 102464 +

log 16
16) × 226 = 3.25 MB.

Compression technique 4: Data aggregation to leverage hash
collisions. Given the intrinsic collision property of hashing, it is
normal that more than one address is mapped to the same address
using a certain hash function. This usually requires introducing
more hash functions such that each address has sufficient choices.
More hash functions, however, lead to higher implementation over-
head. Moreover, more hash functions associate with a larger h and
thus a larger logh, which leads to a longer entry and thus a larger
position map. We address this concern by aggregating collided
data using XOR. If two or more blocks are hashed to the same ad-
dress, we can XOR them into an aggregated block and store the
aggregated block into that address. Such data aggregation not only
saves memory space but also enhances security. Atop accessing the
same data from different locations supported by data duplication,
data aggregation enables accessing different data from the same
location. Such obfuscation leaves an attacker with no clues for cor-
relating memory accesses. Alongside the position map, we use an
independent aggregation map to track XORed blocks. The mem-
ory controller can decide when to access an XORed block based on
whether all but one of its ingredient blocks are in the stash. The size
of the aggregation map should be much smaller than the position
map. We omit quantifying its storage overhead.

4.3 Position Map Update
As data blocks are accessed and invalidated, we need to replenish
more data blocks into memory for future use. Data replenishment
piggybacks data in dummy writes (Section 3.3) and requires up-
dating the position map as well as the aggregation map. Since the
aggregation map is small, we simply replace the invalidated entries
with entries corresponding to newly replenished XORed blocks.
However, it is more challenging to update the position map. In
the current position map design, each block corresponds to only a
counter that indicates how many selected hash functions are used.
Each block needs to select a different hash function to map its new
copy to a different location. A straightforward way is associating
each block with the indices of newly selected hash functions. This
method is ineffective due to two drawbacks. First, each block needs
to maintain the indices of up to c hash functions. This inflates the
positionmap back to the giant traditional one. Second, the addresses

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli

a block can be mapped to is upper bounded by the number of avail-
able hash functions. If we expect that a block be evenly mapped
across the entire memory space, an impractically large number of
hash functions would be needed.

We propose an alias-based mapping technique to efficiently up-
date the position map. As discussed in Section 3.3, we can use a
different address as an address’s mapping alias. That is, after an
address’s originally selected hash functions are all used, it can
direct to its alias’s entry and use the hash functions therein for
address mapping. After its alias’s hash functions are all used, it can
choose another alias. This makes each address uniformly mapped
across the entire memory space without cumbersome and insecure
re-selection of hash functions. Specifically, the alias-based map-
ping introduces two aliases to each entry and one more counter
for each block in that entry. This way, all blocks in the same page
share same aliases but each of them has two propriety counters. One
counter tracks how many hash functions of the current alias is used.
The other counter tracks how many new copies are replenished
to addresses computed using the next alias and its hash functions.
Apparently, the current alias is initialized as an address per se. The
next alias to choose should have higher access frequency than that
of the current alias. Otherwise, replenished data may override some
unaccessed data. For pages with the highest access frequency, we
can leave some blank pages in memory for their aliasing. Further-
more, we can use well-designed caching/buffering strategies of
the stash and caches to balance memory access frequency of each
page. That is, highly frequently accessed blocks usually stay in
cache. They thus may not impose too many real memory accesses
or position-map updates.

We now analyze the position-map size after integrating the alias-
based mapping technique. The overhead it introduces is two alias
(of size 2laddr) per page and one counter (of size log c) per block. Fol-
lowing the analysis of previous compression technique 3, the size of
the position map becomes (c logh+ lpage

lblock
log c+2laddr+

lpage
lblock

log c)×
n
c /

lpage
lblock

. We consider the same settings of 64-bit physical addresses,
64-byte data blocks, 4 KB pages, 4 GB memory, h = 1, 024 hash
functions, and c = 16 copies per block on average as in previous
analysis. The position map then takes a size of 6.25 MB. It is com-
pressed over 100x than the traditional position map and can be
practically fitted into a cache or buffer.

5 IMPLEMENTATION
As with related obfuscation solutions [5, 43], we implemented Mem-
Cloak using the gem5 simulator [7]. Gem5 is widely used for com-
puter architecture research. Its emulation encompasses CPU and
memory modules and supports tracing memory accesses, which are
exactly the operations MemCloak aims to protect. MemCloak im-
plementation aims to enforce the proposed obfuscation techniques
over the conventional memory accesses in gem5. As discussed in
Section 4, key components include the position map (including the
aggregation map), the address computation unit, the hash unit, and
the encryption/decryption unit.

Our modification over gem5 remains as a transparent layer be-
tween the last-level cache and memory. A memory request in gem5
is first transmitted from the CPU to the first-level cache. If it enjoys

a cache hit therein, the requested data is transmitted to the CPU.
Otherwise, the first-level cache redirects the memory request to the
second-level cache. Upon a cache hit on the second-level cache, the
requested data is first transmitted to the first-level cache and then
transmitted to the CPU. Generally speaking, gem5 directs a data
block from the lowest-level cache where the data block is first found
through all its higher-level caches to the CPU. Although this may
take a longer access time when the requested data block is found for
the first time, caching it in some higher-level cache will save its sub-
sequent access time. If a requested data block cannot be found until
the last-level cache, the memory request will be eventually trans-
mitted to memory. A Cache class uses the CpuSidePort interface to
communicate with its higher-level cache (or the CPU if the Cache
class represents the first-level cache) and uses the MemSidePort to
communicate with its lower-lever cache (or memory if the Cache
class represents the last-level cache). Since MemCloak intercepts
memory access requests from the last-level cache and may redirect
these requests to memory, we implement MemCloak by inheriting
from a Cache class in gem5. We use AES counter mode for the
encryption/decryption unit. We adopt the random function rand()
in the standard C library for designing the hash unit. In hardware,
such random number generators can be implemented using cir-
cuit white noise [21]. MemCloak performs address mapping before
sending a memory request to memory and address update before
forwarding a fetched data block to the last-level cache. Our modifi-
cation accounts for 2,000+ lines of C/C++ code while the original
code base of gem5 contains over 250,000 lines.

To evaluate the performance ofMemCloak, we run highlymemory-
intensive workloads from MiBench [19]. MiBench is a representa-
tive benchmark suite for embedded systems. It collects multiple
benchmarks for six embedded application areas, that is, Automotive
and Industrial Control, Consumer Devices, Office Automation, Net-
working, Security, and Telecommunications. As embedded systems
usually have memory restrictions, it is commonly used to validate
efficiency and practicality of access obfuscation solutions [45, 46].
The three highly memory-intensive benchmarks we use are dijkstra,
susan, and jpeg encode from the areas of Networking, Automotive
and Industrial Control, and Consumer Devices.

6 EVALUATION
In this section, we evaluate security and efficiency of MemCloak.
First, the security performance is measured by the randomness of
the address sequence accessed during the execution of a benchmark
[45]. The randomness is tested using the NIST Statistical Test Suite
[23]. Second, the efficiency performance is measured by the exe-
cution time and memory usage of a benchmark on the emulated
computer architecture. The gem5 simulator tracks the number of
clock cycles taken by a benchmark. Then it estimates the execution
time by multiplying the number of clock cycles and the configured
clock period. The results demonstrate that MemCloak can signifi-
cantly randomizes memory accesses with approximately 4% time
overhead and comparative memory overhead with that of ORAM.
Experiment setup. Since gem5 estimates the relative execution
time of a benchmark using the number of clock cycles taken in the
emulated computer architecture, the estimation is insensitive to the
running environment. We currently run our MemCloak prototype

MemCloak: Practical Access Obfuscation for Untrusted Memory ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 1: Comparison of memory access randomness of inse-
cure (without MemCloak) and secure (with MemCloak) exe-
cution. We test the access randomness using the NIST Sta-
tistical Test Suite [30] with 14 randomness analysis tools
supported. The tools corresponding to each row are Fre-
quency (Monobit) Test, Frequency Test within a Block, Cu-
mulative Sums (Cusum) Test 1, Cumulative Sums (Cusum)
Test 2, Runs Test, Test for the Longest Run of Ones in a
Block, BinaryMatrix RankTest, Discrete Fourier Transform
(Spectral) Test, Overlapping Template Matching Test, Mau-
rer’s “Universal Statistica” Test, Approximate Entropy Test,
Serial Test 1, Serial Test 2, and Linear Complexity Test [30].

dijkstra susan jpeg encode
insecure secure insecure secure insecure secure
0/283 249/528 14/318 162/397 112/1133 1777/1813
0/283 511/528 19/318 381/397 28/1133 1137/1813
0/283 267/528 11/318 167/397 28/1133 1137/1813
0/283 266/528 11/318 169/397 23/1133 1134/1813
0/283 424/528 2/318 272/397 11/1133 1333/1813
1/283 515/528 15/318 371/397 112/1133 1787/1813
281/283 525/528 316/318 389/397 1124/1133 1805/1813
20/283 526/528 221/318 392/397 279/1133 1792/1813
264/283 521/528 313/318 386/397 1116/1133 1783/1813
0/283 0/528 0/318 0/397 0/1133 0/1813
0/283 309/528 0/318 150/397 0/1133 841/1813
1/283 483/528 1/318 391/397 0/1133 1692/1813
26/283 506/528 5/318 395/397 329/1133 1757/1813
273/283 510/528 307/318 385/397 1107/1133 1751/1813

average
62/283 401/528 88/318 286/397 305/1133 1409/1813
= 22% = 76% = 28% = 72% = 27% = 78%

on aMacBook Pro with a 4-core 2.9-GHz Intel Core i7 processor and
16 GB memory. Following [45], we use two 8-way associative 32 KB
caches (one for instructions and the other for data) to strengthen
the memory intensiveness of the selected benchmarks. We observe
that another reason to limit the cache size during emulation is that
the benchmarks may not have sufficiently large workload. If the
size of the cache(s) is relatively large, most data can be cached
after the first read. The cases when the CPU accesses the same
location twice for reading certain data would be rare. This does not
necessarily require access obfuscation. In other words, it is hard
to comprehensively evaluate the performance of an obfuscation
solution when few repetitive memory accesses exist. Since the
benchmark workload is fixed, we need to restrict the cache size
to indirectly yield more memory accesses. Other settings of the
emulated computer architecture include a 2 GHz processor, a 4 GB
memory, an 8 KB stash, 4 KB pages, and 64-byte blocks.

6.1 Memory Access Randomness
Following [45], we evaluate the obfuscation efficacy of MemCloak
by measuring the randomness of the access sequence. We test the
access randomness using the NIST Statistical Test Suite (version
2.1.2, updated in 2010) [30]. It is originally designed to validate ran-
dom number generators and pseudo-random number generators
[29]. Then it is widely used for randomness analysis as well. We
refer interested readers to [30] for the technical details. Toward

Table 2: Comparison of execution time in seconds of inse-
cure (without MemCloak) and secure (with MemCloak) exe-
cution.

dijkstra susan jpeg encode
insecure secure insecure secure insecure secure
5.551 5.778 492.475 509.718 7.542 7.843

measuring the access randomness, we first collect the access se-
quence while running a selected benchmark and snooping on the
address bus. We then convert the access sequence into a bit stream
by concatenating all of the block addresses in the same order as
they are collected. We input the bit stream to the NIST Statistical
Test Suite. It will be divided into same-length bitstrings, each is
analyzed by all supported randomness analysis tools in the NIST
Statistical Test Suite. A higher randomness of the input bit stream
depends on the following two properties.

• For each randomness analysis tool, more bitstrings of the bit
stream can pass the test.

• For all randomness analysis tools, more of them can accept
most of the bitstrings of the bit stream.

We compare the access randomness of benchmark execution
with or without MemCloak obfuscation. Table 1 reports the com-
parison using benchmarks of dijkstra, susan, and jpeg encode; each
data block has 10 differently-encrypted copies into the memory. In
each column, each row reports the randomness test result using
one of the 14 supported randomness analysis tools. For most of the
tools, the insecure execution without MemCloak obfuscation can
barely pass the test. In contrast, MemCloak significantly random-
izes memory access in that most bitstrings can pass the randomness
test. Take, for example, the results of the dijkstra benchmark using
the Frequency (Monobit) Test tool (i.e., the two values on the top
left corner). Without access obfuscation, 0

283 = 0% of the bitstrings
of the bit stream corresponding to the access sequence can pass
the randomness test. Armed with access obfuscation by MemCloak,
249
528 = 47% of the bitstrings can pass the test. Note that MemCloak
inducesmorememory accesses because of dummywrites. As shown
in Table 1, MemCloak significantly increases the access randomness
from below 30% to over 70% on average. Furthermore, MemCloak
outperforms the existing O(1)–communication-overhead access
obfuscation solution [45], in which the average randomness test
result ranges from 13% to 44%.

6.2 Execution Time
Table 2 reports the execution time corresponding to different bench-
mark executions in Table 1. Since protecting the access type neces-
sitates dummy writes, MemCloak requires more memory accesses
and therefore takes more time. The average time overhead is about
4%, estimated using the time measurements in the “insecure” and
“secure” columns as secure − insecure

insecure .

6.3 Memory Usage
Finally, we evaluate how the number of copies per data block affects
memory usage and obfuscation randomness. Intuitively, the more
copies each data block has, the more memory space MemCloak
consumes. Given c copies per data block, the memory overhead
is upper bounded by c−1

c = 1 − 1
c . Although we can aggregate

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Weixin Liang, Kai Bu, Ke Li, Jinhong Li, and Arya Tavakoli

Table 3: Comparison of memory access randomness of in-
secure (with only the original data, i.e., one copy per data
block) and secure (with MemCloak) execution with various
number of copies per data block.

benchmark number of copies per data block
1 2 4 6 8 10

dijkstra 22% 70% 74% 76% 76% 77%
susan 28% 68% 70% 70% 71% 72%
jpeg encode 27% 75% 76% 76% 77% 77%

data blocks to mitigate the memory overhead, it is challenging
to quantify or evaluate the effect in a generalized way. It highly
depends on how many blocks to aggregate into one and how many
copies of a data block to select for aggregation. This is easy to
regulate upon initialization but tends to vary during execution.

Fortunately, our evaluation results show that MemCloak can
guarantee a satisfactory access randomness with only a limited
data redundancy. Furthermore, the increase of access randomness
does not significantly increase with the number of copies per data
block. This simplifies how to find a tradeoff between memory us-
age and obfuscation security. Table 3 reports the average access
randomness of MemCloak with different levels of data redundancy
in comparison with that of the traditional memory access with-
out obfuscation. Specifically, the case of one copy corresponds to
the traditional memory access. The cases with two or more copies
correspond to MemCloak. MemCloak gains limited randomness
improvement as data redundancy increases. When MemCloak uses
only two copies per block, it can already improve the access ran-
domness from under 30% to over 65% for each benchmark. In this
case, using two copies per data block lead to up to 50% memory
overhead, which is comparative to that of ORAM [34].

7 DISCUSSION
Timing attack. As with ORAM, MemCloak does not protect mem-
ory access against timing attacks. A timing attack exploits fine-
grained timing measurements snooped on the address bus [6, 16].
For example, the access number and frequency, and the gaps be-
tween observed memory requests can leak information of program
characteristics [44]. A straightforward countermeasure is that the
memory controller enforces fixed-rate memory accesses. Enforcing
a constant access rate, however, impairs scheduling flexibility and
increases the difficulty of tuning tradeoff between security and
performance. A better way is to shape the rate of CPU-memory
communication into a pre-determined distribution [16, 44]. When
genuine traffic solely cannot satisfy the distribution, additional fake
traffic is injected. Traffic shaping against timing attacks is com-
plementary to access obfuscation [44]. Both schemes need to be
deployed when necessary.
Statistics-based attack. Originally targeting searchable encryp-
tion, a statistics-based attack enables an honest-but-curious server
to infer encrypted keywords using search pattern and occurrence
frequency over its hosted encrypted data [20, 33]. For example,
“Thanksgiving” can be a hot keyword on the Thanksgiving Day.
The encrypted Thanksgiving-related information stored on the
server must be frequently hit as responses to queries. Then if a new
encrypted query arrives and the frequently-hit data is hit by the
query, it is reasonable for the server to conjecture that the said query
includes the keyword “Thanksgiving”. Mounting a statistics-based

attack on memory access, an attacker needs a fixed data placement
in memory. This requirement is, however, exactly what ORAM
and MemCloak break to protect memory access patterns. There-
fore, MemCloak as well as existing access obfuscation solutions are
robust against statistics-based attacks.
Trace-driven attack. Such an attack exploits the traces of cache
hits and misses during AES encryption to infer the secret key [1].
That is, the attacker should be empowered with two types of in-
formation. One is that the program under execution is AES. The
other is the corresponding trace of cache of hits and misses. With-
out memory access obfuscation, both types of information can be
inferred via snooping on the address bus. First, access patterns can
be used to profile the program and therefore reveal its type [46].
Second, a memory request indicates a cache miss; this eases the
measurement of cache hits and misses. Fortunately, both types of
inference are throttled by MemCloak alike obfuscation solutions,
which disguise memory access patterns against profiling. Further-
more, MemCloak introduces dummy reads and writes to protect the
type of memory access. A read operation thus does not always rep-
resent a real memory request. This way, MemCloak further impedes
the measurement of cache traces and therefore protects memory
access from trace-driven attacks.

8 CONCLUSION
We have designed, implemented, and evaluated MemCloak, a practi-
cally efficient solution for obfuscating accesses over untrusted mem-
ory. It achieves O(1) communication overhead by leveraging data
redundancy. Specifically, MemCloak preloads multiple differently-
encrypted copies of each block in memory. This enables the CPU
to fetch the same data by accessing different memory addresses
and therefore leaks no access pattern. Furthermore, it improves
memory utilization by introducing data aggregation. XORing two
blocks into one, we can access the XORed block for fetching one of
the two blocks when the other is fetched and cached/buffered. This
not only saves memory space but also strengthens security. The
CPU can now access the same address for fetching different data.
With this, MemCloak leaves an attacker with no clue for correlat-
ing memory accesses. A common challenge for access obfuscation
design is limiting the size of the position map that tracks memory
layout. We propose a series of optimization techniques without
sacrificing security. MemCloak can compress a giant traditional
position map of size up to 1 GB into a significantly smaller one of
only several megabytes. Such a compression over hundreds of times
makes the position map practically fit in an on-chip cache/buffer.
We implement MemCloak on the gem5 simulator [7] and validate
its performance using memory-intensive MiBench benchmarks
[19]. For future work, we plan to extend MemCloak to obfuscate
data accesses over cloud, where memory is more affordable than
communication.

ACKNOWLEDGEMENT
This work is supported in part by the National Natural Science
Foundation of China under Grant No. 61402404. We would like
to thank ACSAC 2018 Chairs and Reviewers and our shepherd,
Evangelos Markatos, for their review efforts and helpful feedback.
We would also like to extend our gratitude to Tao Li and Baiqiang
Leng for their help with implementation of MemCloak.

MemCloak: Practical Access Obfuscation for Untrusted Memory ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

REFERENCES
[1] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-driven cache attacks on AES

(short paper). In ICICS. 112–121.
[2] Shaizeen Aga and Satish Narayanasamy. 2017. InvisiMem: Smart Memory De-

fenses for Memory Bus Side Channel. In ISCA. 94–106.
[3] Frances E Allen. 1970. Control flow analysis. In ACM Sigplan Notices, Vol. 5.

1–19.
[4] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne.

2016. Silent shredder: Zero-cost shredding for secure non-volatile main memory
controllers. In ASPLOS. 263–276.

[5] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. 2017. Obfusmem:
A low-overhead access obfuscation for trusted memories. In MICRO. 107–119.

[6] Chongxi Bao and Ankur Srivastava. 2017. Exploring timing side-channel attacks
on path-orams. In HOST. 68–73.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[8] Zhao Chang, Dong Xie, and Feifei Li. 2016. Oblivious ram: a dissection and
experimental evaluation. VLDB, 1113–1124.

[9] Siddhartha Chhabra and Yan Solihin. 2011. i-NVMM: a secure non-volatile main
memory system with incremental encryption. In ISCA. 177–188.

[10] Kai-Min Chung, Zhenming Liu, and Rafael Pass. 2014. Statistically-secure ORAM
with Õ (loд2n) Overhead. In Asiacrypt. 62–81.

[11] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. 2016. Onion ORAM: A constant bandwidth blowup oblivious
RAM. In TCC. 145–174.

[12] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (1976), 644–654.

[13] Jack Doerner and abhi shelat. 2017. Scaling ORAM for Secure Computation. In
CCS. 523–535.

[14] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang. 2017. Se-
cure Encrypted Virtualization is Unsecure. ArXiv e-prints (Dec. 2017).
arXiv:cs.CR/1712.05090

[15] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas
Devadas. 2015. Freecursive oram:[nearly] free recursion and integrity verification
for position-based oblivious ram. In ASPLOS. 103–116.

[16] Christopher W Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,
and Srinivas Devadas. 2014. Suppressing the oblivious ram timing channel
while making information leakage and program efficiency trade-offs. In HPCA.
213–224.

[17] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten Van Dijk, and Srinivas
Devadas. 2003. Caches and hash trees for efficient memory integrity verification.
In HPCA. 295–306.

[18] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. J. ACM 43, 3 (1996), 431–473.

[19] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially represen-
tative embedded benchmark suite. In IEEE International Workshop on Workload
Characterization. 3–14.

[20] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.
In NDSS, Vol. 20. 12.

[21] Benjamin Jun and Paul Kocher. 1999. The Intel random number generator.
Cryptography Research Inc. white paper (1999).

[22] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. In ASPLOS. 168–177.

[23] Kinga Marton and Alin Suciu. 2015. On the interpretation of results from the
NIST statistical test suite. SCIENCE AND TECHNOLOGY 18, 1 (2015), 18–32.

[24] Yuto Nakano, Carlos Cid, Shinsaku Kiyomoto, and Yutaka Miyake. 2012. Mem-
ory access pattern protection for resource-constrained devices. In International

Conference on Smart Card Research and Advanced Applications. 188–202.
[25] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Cryptographers’Track at the RSA Conference.
1–20.

[26] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In CRYPTO.
502–519.

[27] Ling Ren, ChristopherW Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
Van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements
to Oblivious RAM.. In USENIX Security Symposium. 415–430.

[28] Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 2 (1978),
120–126.

[29] A Ruk et al. 2001. A statistical test suite for the validation of random number gen-
erators and pseudo-random number generators for cryptographic applications.
NIST Special Publication (2001).

[30] Andrew Rukhin, J Soto, J Nechvatal, M Smid, M Levenson, D Banks, M Vangel, S
Leigh, S Vo, and J Dray. 1999. A statistical test suite for the validation of crypto-
graphic random number generators. NIST Computer Security Division/Statistical
Engineering Division Internal Document (1999).

[31] Ali Shafiee, Rajeev Balasubramonian, Mohit Tiwari, and Feifei Li. 2018. Secure
DIMM: Moving ORAM Primitives Closer to Memory. In HPCA. 428–440.

[32] Weidong Shi, Hsien-Hsin S Lee, Mrinmoy Ghosh, Chenghuai Lu, and Alexan-
dra Boldyreva. 2005. High efficiency counter mode security architecture via
prediction and precomputation. In ISCA, Vol. 33. 14–24.

[33] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-
niques for searches on encrypted data. In S&P. 44–55.

[34] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In CCS. 299–310.

[35] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. Efficient memory integrity verification and encryption for secure
processors. In MICRO.

[36] Rujia Wang, Youtao Zhang, and Jun Yang. 2017. Cooperative Path-ORAM for
Effective Memory Bandwidth Sharing in Server Settings. In HPCA. 325–336.

[37] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On tightness of
the Goldreich-Ostrovsky lower bound. In CCS. 850–861.

[38] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi.
2014. SCORAM: oblivious RAM for secure computation. In CCS. 191–202.

[39] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin.
2006. Improving cost, performance, and security of memory encryption and
authentication. In ISCA. 179–190.

[40] Jun Yang, Lan Gao, Youtao Zhang, Marek Chrobak, and Hsien-Hsin S Lee. 2010.
A low-cost memory remapping scheme for address bus protection. J. Parallel
and Distrib. Comput. 70, 5 (2010), 443–457.

[41] Vinson Young, Prashant J Nair, and Moinuddin K Qureshi. 2015. DEUCE: Write-
efficient encryption for non-volatile memories. ASPLOS (2015), 33–44.

[42] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. 2016. Revisiting square-root ORAM: efficient random
access in multi-party computation. In S&P. 218–234.

[43] Xian Zhang, Guangyu Sun, Chao Zhang, Weiqi Zhang, Yun Liang, Tao Wang,
Yiran Chen, and Jia Di. 2015. Fork path: improving efficiency of oram by removing
redundant memory accesses. In MICRO. 102–114.

[44] Yanqi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Camou-
flage: Memory traffic shaping to mitigate timing attacks. In HPCA. 337–348.

[45] Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S Lee, and Santosh Pande. 2004. Hard-
ware assisted control flow obfuscation for embedded processors. In CASES. 292–
302.

[46] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. 2004. HIDE: an infrastructure
for efficiently protecting information leakage on the address bus. In ASPLOS.
72–84.

http://arxiv.org/abs/cs.CR/1712.05090

	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

