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Abstract—Software-Defined Networking (SDN) greatly simpli-
fies middlebox policy enforcement. Middleboxes need tag packet
headers to avoid forwarding ambiguity on SDN switches. In this
paper, we present a new attack, called middlebox-bypass attack,
to breach SDN-based middlebox policy enforcement. Such an
attack manipulates a compromised switch to locally tag attacking
packets without handing them over to the attached middlebox
for inspection. Existing SDN security solutions, however, cannot
detect the middlebox-bypass attack under practical constraints of
efficiency, robustness, and applicability. We design and implement
FlowCloak, the first protocol for per-packet real-time detection
and prevention of middlebox-bypass attacks. FlowCloak enables
middleboxes to generate tags that are probabilistically unknown
to an attacker and confines it to only random guessing. We
propose a multi-tag verification technique to address the tradeoff
between FlowCloak robustness and TCAM usage by tag verifi-
cation rules on the egress switch. Experiment results show that
dozens of verification rules can confine the attacking probability
under 0.1%. FlowCloak imposes only a 0.3 ms packet processing
delay on middleboxes and no obvious delay on the egress switch.

I. INTRODUCTION

Since the rise of middleboxes, the intricacy of enforcing

middlebox policies never ceases [1]. Middleboxes are spe-

cialized appliances providing services like traffic engineering

and packet inspection beyond the capability of routing and

forwarding devices. A survey in 2012 shows that middleboxes

account for a third of devices in the 57 surveyed enterprise net-

works [2]. It also reveals the high cost of managing distributed

heterogeneous middleboxes—a mere 10 middleboxes may

demand a management team of 6-25 personnel. Furthermore,

distributively configuring middleboxes is complex and error

prone—over 50% of the interviewed administrators regard

misconfiguration as the most common cause of middlebox

failures. Sherry et al. pioneer the idea of reducing middlebox

management cost by outsourcing middlebox functions (except

internal firewalls) to the cloud [3]. A feasible outsourcing solu-

tion should overcome various challenges regarding consistency

[4], security [5], and privacy [6]. Another innovation for easing

middlebox management is to consolidate middlebox services

into a commodity server by decomposing middleboxes and

eliminating redundant processing modules [7]–[9].

Without radical infrastructure changes like outsourcing and

consolidating middleboxes, SDN also offers great flexibility

in enforcing middlebox policies [4], [8]–[12]. Such flexibility

stems from an SDN controller’s global network view of

topology, routing, and statistics. This information is reported

by a number of distributed SDN switches. To enforce network

policies, the controller—with the help of hosted management

applications—translates the policies into rules and installs

them on switches. The controller can use crafted rules to

direct specific packets through a chain of middleboxes, without

wrestling with the complexity of middlebox deployment other-

wise necessary in prior-SDN networks [10], [12]. Since SDN

rules match with packets against specified header fields, for-

warding ambiguity arises when a packet goes through a switch

more than once, each time toward a different next hop. This

forwarding ambiguity is further exacerbated by middleboxes

like NAT. Without their modification strategies as a priori,

it is hard to pre-configure rules for modified packets. Stateful

processing against forwarding ambiguity requires middleboxes

to tag packet headers [11]. The tagging scheme is lightweight

and augments only tens of lines of code to middleboxes.

In this paper, we identify a new attack called middlebox-

bypass attack against SDN-based middlebox policy enforce-

ment. A middlebox-bypass attack occurs when a compromised

switch locally tags packets without forwarding them to its

attached middlebox. Such a policy breach leads to potential

performance degradation and especially security threats. Coun-

termeasures are solicited as compromising SDN switches is

no longer a hypothesis. An attacker can compromise a switch

by exploiting its vulnerabilities or reconfiguring it after getting

the access [13]–[15]. Compromised servers and switches were

exploited to carry out 55% of all attacks monitored by IBM in

2014 [16]. Emerging software switches like Open vSwitch are

easier to compromise than traditional physical switches [17].

Although verifying rule correctness [18] and effectiveness [19]

is fully investigated, detecting rule violation by compromised

switches draws only limited attention. One may inject probe

packets to the data plane [20], [21]. If a switch does not

process a probe packet as expected, the switch is suspected

as compromised. One may also use flow-statistics [17], [21]–

[23]. When a compromised switch injects, drops, or reroutes

packets, flow statistics of switches along a path may fluctuate.

The middlebox-bypass attack, however, can evade both

probe- or statistics-based detection because it neither reroutes

packets from switches nor incurs flow statistics fluctuation

across switches. One may enable middleboxes to report probe

results and flow statistics. However, probe-based detection

promises per-packet detection but lacks detection accuracy.

A compromised switch likely misbehaves for only target

production packets. Flow-statistics can more comprehensively

track switch forwarding behaviors, but it is hard to estimate

the exact statistics of each flow path. Statistics-based detection

methods convict a flow fluctuation that exceeds a prede-



fined threshold; this limits detection precision. Furthermore,

statistics emerge after packets flee. They thus discourage real

time detection of suspicious packets, let alone quarantining

them from end hosts. Besides, both solutions are limited in

efficiency as they compete with conventional management

operations (e.g., topology discovery and rule update) for scarce

control channel bandwidth [24].

We present the design and implementation of FlowCloak,

the first protocol for per-packet real-time prevention and de-

tection against middlebox-bypass attacks. FlowCloak enables

middleboxes to mark packet headers with packet-specific tags

that are deterministically synchronized across middleboxes

and the egress switch, yet probabilistically unknown to other

switches. Middleboxes have an intrinsically secure design be-

cause they contain sufficient hardware and software resources

for affording advanced security solutions. If the egress switch

is compromised, there is no next-hop switch to check its

forwarding correctness and thus leaves open the possibility for

its any injection, dropping, or reroute attack. The integrity of

the egress switch is therefore imperative [17], [20]–[23]; but its

adopted security solution might be as expensive as infeasible

to augment to all switches. Tags generated by a middlebox will

be verified by another middlebox or the egress switch. Since

an attacker is unaware of the tagging strategy, it can hardly

forge correct tags that the bypassed middlebox would use for

specific packets. This not only lowers attack probability but

also raises detection probability.

A major challenge is practically efficient tag verification on

the egress switch. SDN switches follow controller-designated

rules to process packets at the line speed and do not support

the complex computation over packet headers supported by

middleboxes. While middleboxes can use any computation to

generate tags as long as they fit the size of unused bits in

packet headers, the egress switch has to emulate the computa-

tion using simple tag verification rules. Consider for example

that middleboxes compute t-bit tags over h header bits. The

egress switch needs 2h rules to verify the h-to-t bit mapping.

A larger h improves inference resistance but increases the

number of rules. However, SDN switches install rules in

expensive and power-hungry Ternary Content Addressable

Memory (TCAM), which can accommodate only thousands

of OpenFlow rules [24]. One may work around the TCAM

constraint by mounting an additional middlebox to the egress

switch. The induced delay by packets traveling through the

additional middlebox, however, may not be affordable. Even a

delay of hundreds of milliseconds per transaction can deprive

Internet service providers of million-dollar profits [25].

We propose a multi-tag verification technique to make the

number of tag verification rules practically affordable to the

egress switch. The idea is to divide the preceding h-to-t

mapping process into subprocesses of hi-to-ti mapping, where

we have Σhi = h and Σti = t. This enables tag verification

on the egress switch to leverage flow table pipeline, which has

been supported since OpenFlow Switch Specification Version

1.1.0 in 2011 [26]. That is, each table verifies one hi-to-ti
mapping and only passing all tables succeeds tag verification.
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Fig. 1. Stateful packet processing against forwarding ambiguity in SDN-based
middlebox policy enforcement [10], [11]. Example policy chains Firewall-
IDS-Proxy (i.e., packet instances of 1-2-3-4-5) and Firewall-IDS-NAT (i.e.,
packet instances of 1-2-3′-4′-5) need middlebox-added tags in packet headers
to differentiate processing states, that is, prior or post which middlebox.

The number of tag verification rules now shrinks to Σ2hi ,

instead of a much larger 2h = 2Σhi . Moreover, each of the

Σ2hi rules is shorter than original rules. We thus can leverage

variable-length flow tables to save more TCAM space [27].

To guarantee robustness, FlowCloak may map different packet

headers to the same tag while the same packet header to

different tags. This confines an attacker to random guessing.

In summary, we make the following contributions to secur-

ing SDN-based middlebox policy enforcement.

• Identify a new attack called middlebox-bypass attack that

breaches middlebox policies in SDN (Section II).

• Propose FlowCloak as the first protocol to not only detect

but also prevent middlebox-bypass attacks (Section III).

Our measurement study demonstrates the feasibility of

generating packet-specific tags toward per-packet real-

time attack detection (Section VII-A).

• Propose a multi-tag verification technique to address

the tradeoff between FlowCloak robustness and TCAM

constraint on the egress switch (Sections IV-V).

• Implement FlowCloak using Snort, the most widely de-

ployed IDS/IPS (Section VI). Our modification takes only

387 lines of C code over Snort’s 293K lines. Experiment

results (Section VII) show that a 10-bit tag suffices to

limit attacking probability within 0.1%; it requires only

dozens of rules on the egress switch. FlowCloak imposes

only a 0.3 ms packet processing delay on a middlebox

and no obvious delay on the egress switch.

II. PROBLEM

In this section, we define the middlebox-bypass attack in

SDN and explore the goals and challenges for countermeasure

design. We find adapting existing malicious-switch counter-

measures limits efficacy, efficiency, security, and applicability.

A. Middlebox Meets SDN

To address forwarding ambiguity for enforcing middlebox

policies, middleboxes have incentives to enable stateful packet

processing albeit this might impose minor software update

[11]. Simply translating intricate off-packet topology into

control logic is not SDN friendly [10], [11]. Fayazbakhsh

et al. [11] propose that middleboxes add tags in packet

headers to track their processing states. The tagging scheme

is lightweight and effective yet without switch modification.



TABLE I
TAG-AUGMENTED RULES FOR ENFORCING POLICY CHAINS

FIREWALL-IDS-PROXY (I.E., PACKET INSTANCES OF 1-2-3-4-5) AND

FIREWALL-IDS-NAT (I.E., PACKET INSTANCES OF 1-2-3’-4’-5) IN FIG. 1.
(pkt ins: Packet Instance.)

Switch Tag-augmented Rule
matching action pkt ins

S1 protocol=http, tag=null fwd to Firewall 1
protocol=http, tag=Firewall fwd to S3 2
protocol=http, tag=IDS fwd to Proxy 3
protocol=http, tag=Proxy fwd to S3 4

S3 protocol=http, tag=Firewall fwd to IDS 2
protocol=http, tag=IDS fwd to S1 3
protocol=http, tag=Proxy tag=null, fwd out 5
src=voter, tag=IDS fwd to S2 3′

tag=NAT tag=null, fwd out 5
S2 src=voter, tag=IDS fwd to NAT 3′

tag=NAT fwd to S3 4′

Take the policy chain S1-Firewall-S1-S3-IDS-S3-S1-Proxy-

S1-S3 in Fig. 1 as an example. When S1 first receives a non-

tagged HTTP packet, it knows that the packet just entered the

network and should be directed to Firewall. To enable stateful

packet processing, Firewall adds a tag in unused header fields

such as VLAN tags and MPLS labels [10]. When S1 receives

the packet with tag Firewall, S1 knows that the packet has

been processed by Firewall. S1 then forwards it to switch

S3. S3 and subsequent switches follow a similar process.

All their forwarding decisions are enforced by tag-augmented

rules dictated by the controller. Table I illustrates rules on S1

and S3 for enforcing policy chain Firewall-IDS-Proxy. Note

that egress switch S3 needs to untag the packet before sending

it out; this avoids affecting checksum verification on end hosts.

Another benefit of such a tagging scheme is to address the

challenge raised by header-modifying middleboxes. Consider

a policy chain Firewall-IDS-NAT (i.e., packet instances of 1-

2-3′-4′-5) in Fig. 1 for example. Assume that it aims to protect

source privacy of a voter during an anonymous electronic

voting. NAT rewrites packet headers before packets go outside

the network. Although the modified packets are agnostic to

the controller, it can use the tag NAT to configure rules for

processing NAT-processed packets. Corresponding rules on S3

and S2 are also illustrated (in italic) in Table I.

B. Middlebox-Bypass Attack

We find that middlebox-bypass attacks remain the missing

piece in the rising battle against compromised switches. In a

middlebox-bypass attack, a compromised switch does not

forward likely suspicious packets to its attached middlebox for

a security check. Instead, it directly tags these packets as if

they were verified by the bypassed middlebox. The switch can

easily recognize expected tags in local tag-augmented rules. As

illustrated in Fig. 2, the compromised switch S2 tags a packet

with IDS (i.e., packet instance 3′) without actually handing

over the packet to IDS for inspection. Next-hop switch S3,

however, deems the packet inspected based on tag IDS in the

packet header. The middlebox-bypass attack thus unleashes

suspicious packets and breaches security policies.

Adversary Model. We assume that an attacker can compro-

mise any switches on a middlebox policy chain except the

egress switch (Section I). The integrity of the egress switch is
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Fig. 2. Middlebox-bypass attack example. When enforcing the policy chain
S1-S2-IDS-S2-S3 (i.e., packet instances of 1-2-3-4-5-6), the compromised
switch S2 does not forward the packet to IDS. But S2 locally tags it with
IDS, which makes subsequent S3 regard the packet as inspected by IDS. The
actually enforced policy chain thus becomes S1-S2-S3 (i.e., packet instances
of 1-2-3′-5-6), with IDS bypassed.

specified or implied as necessary in existing compromised-

switch detection solutions [17], [20]–[23]. Compromised

switches may bypass middleboxes in the way of a coward at-

tack [28], that is, launching an attack only when they cannot be

caught by, for example, probing packets and statistics analysis.

Under the control of an attacker, compromised switches may

adopt various strategies to infer the countermeasure principle.

They may also collude to increase the probability of evasion.

For ease of discussion, we assume that compromised switches

misbehave only through bypassing middleboxes. Existing so-

lutions [17], [20]–[23] can be adopted to combat other switch

misbehaviors such as injection and drop. We consider our

work complementary to these solutions; together they secure

network policy enforcement.

Assumptions. Although switches may be compromised, we

assume that the controller and middleboxes are trusted. A

trusted controller is critical for correct functioning of the

network [17]. Trusted middleboxes are also crucial as they play

decisive roles for network performance (e.g., load balancer and

proxy) and security (e.g., Firewall and IDS) [3]. Therefore,

controllers and middleboxes are more complex and resource-

sufficient by design. They are thus more likely to afford

expensive security mechanisms than are switches with merely

forwarding functions. For ease of understanding, we assume

a network with a single ingress switch and a single egress

switch. It is straightforward to apply our definition and solution

to multi-ingress/multi-egress–switch scenarios.

C. Solution Goals and Challenges

We expect that a middlebox-bypass attack countermeasure

fulfills the following performance goals regarding granularity,

timeliness, efficiency, effectiveness, robustness, and applicabil-

ity. These goals face respective challenges, which can hardly

be jointly addressed by merely adapting existing malicious-

switch countermeasures.

Granularity: Per-packet detection. It is most likely that

middlebox-bypass attacks aim to evade security middleboxes.

Even one evaded attacking packet may cause various security

and privacy issues to the target end host. We expect a solution

to detect the middlebox-bypass attack at a packet level.

Timeliness: Real-time detection. Given the potential severity

of attacking packets, we also expect to throttle them before

they exit the network. Per-packet real-time detection, however,

cannot simply report the processing result of every packet to

the controller [29]. Massive traffic generated by such report

fatigues the control channel and thus degenerates network

performance like lower throughput and longer delay [24].



TABLE II
COMPARISON OF FLOWCLOAK WITH STRAWMAN SOLUTIONS BASED ON

EXISTING MALICIOUS-SWITCH COUNTERMEASURES.

Legend: PPD: Per-packet detection; RTD: Real-time detection;
Legend: DPD: Data-plane detection; BD: Beyond detection;
Legend: CAR: Coward-attack resistance; IC: Infrastructure computability;

Solution PPD RTD DPD BD CAR IC
probe [20], [21] 3 3 7 7 7 3

statistics [17], [21]–[23] 7 7 7 7 7 3

path verification [30] 3 3 7 3 3 7

FlowCloak 3 3 3 3 3 3

Efficiency: Data-plane detection. Toward efficient detection

without impacting other performance measures, we strive to

constrain detection to the data plane. Instead of pushing

packets’ processing results [20], [21] or statistics [17], [21]–

[23] to the centralized controller, distributed data-plane devices

like middleboxes and switches should locally check whether

a packet is middlebox-verified. A challenge arises here is that

switches are resource constrained and even compromised.

Effectiveness: Beyond detection. Responses to detected at-

tacks usually lead to performance oscillations. For example,

after detecting a middlebox-bypass attack, the corresponding

data-plane device must report it to the controller. The con-

troller may configure a new flow path for the attacked flow

and reuse the original path when the compromised switch is

fixed. To accomplish this, certain actions are required from

both control and data planes. To minimize the number of

such actions, we expect to actively reduce the probability of

a compromised switch inferring the correct tags used by the

target middlebox. This challenge is not handled by existing

detection-based malicious-switch countermeasures.

Robustness: Coward-attack resistance. This would be a side

product of per-packet detection. It is not guaranteed by probe

[20], [21] or statistics [17], [21]–[23] based solutions.

Applicability: Infrastructure compatibility. From a func-

tional perspective, path verification schemes [30] would be

feasible for middlebox-bypass attack detection. Such schemes

let each forwarding device append a cryptographic footprint to

the header of each passing packet. The cryptographic footprint

is generated using a key shared between the controller and

device. The egress switch will report packets to the con-

troller for verification. Specifically, the controller knows the

reported packet’s expected path and keys of enroute devices.

The controller can then generate the expected cryptographic

footprint and compare it with that of the reported packet.

Although promising a per-packet detection, such schemes rely

on the centralized controller for verification. Furthermore, they

require cryptographic computation, which is not supported by

current switches or even middleboxes yet.

As demonstrated in Table II, FlowCloak as presented in this

paper is the first protocol against middlebox-bypass attacks

with all the preceding goals and challenges addressed.

III. OVERVIEW

In this section, we present FlowCloak to achieve per-packet

real-time detection of middlebox-bypass attacks. It enables

a middlebox to mark packets with packet-specific tags that

are random to an attacker yet deterministic to a subsequent

tag generation policy (tgp)
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Fig. 3. FlowCloak architecture toward per-packet real-time detection of
middlebox-bypass attacks. Besides deterministic tags for tracking processing
states, middleboxes add probabilistic tags in packet headers for the subsequent
middlebox or egress switch to verify packets.

middlebox or the egress switch, which verifies the tags.

FlowCloak functions beyond simple detection because the

random tagging scheme lowers the probability of a successful

attack. As with prior solutions for SDN-based middlebox

policy enforcement [11], FlowCloak requires minor software

modification of middleboxes but no modification of switches.

A. Methodology

FlowCloak defeats the middlebox-bypass attack by random-

izing tags for different packets in the same flow. To this end,

besides the conventional deterministic tag (dtag) for tracking

a packet’s processing states [11], middleboxes introduce an

additional packet-specific probabilistic tag (ptag) in the packet

header1. Although dtags are known to middlebox-adjacent

switches, FlowCloak synchronizes ptags from a middlebox

with a downstream verification device (i.e., another middlebox

or the egress switch). The verification device triggers an alarm

whenever it receives a packet with a different tag from the

synchronized one. A satisfactory tagging scheme not only

lowers attack probability but also raises detection probability.

This way, FlowCloak makes a middlebox’s connecting switch

harder to infer the correct tag for a packet and thus prevents

middlebox-bypass attacks. In other words, FlowCloak is not

simply a passive detection solution that endures likely persis-

tent attacks. It actively interferes with the attacking process to

discourage the attacker as much as possible.

B. Architecture

FlowCloak enforces a distributed packet verification ar-

chitecture based on intrinsically secure and readily available

elements. As shown in Fig. 3, FlowCloak requires each

verification device to verify only its previous hop middlebox.

Take the illustrated policy chain S1-Firewall-S1-S2-IDS-S2-

S3 as an example. IDS verifies Firewall-tagged packets while

egress switch S3 verifies IDS-tagged packets. Such a step-wise

verification may make the last middlebox in a policy chain

the weakest point. In the preceding example policy chain, as

long as an attacker can successfully bypass IDS, it breaches

the entire security policy no matter whether it can bypass

Firewall or not. The attacker, however, needs the knowledge

of network-wide rules to identify last-hop middleboxes. We

consider this beyond a practical attacking capability because

rule update is via secure controller-switch communication and

1Based on the processing result, a middlebox may assign different dtags to
a packet [11]. Fayazbakhsh et al. propose reusing a dtag when, for example,
corresponding flow expires or corresponding policies take non-joint paths [11].
For ease of presentation, we thus assume only one dtag per middlebox.



topological information alone is not sufficient for identifying

last-hop middleboxes. As shown in Fig. 1, Proxy is located

next to the ingress switch but serves as the last-hop middlebox

of the policy chain Firewall-IDS-Proxy.

The controller coordinates tag generation and verification

across middleboxes and the egress switch. For each middlebox,

the controller provides it with tag generation policies. How

a middlebox generates tags should take into account the

computing capability of its downstream verification device.

If it is another middlebox, tag generation can freely choose

feasible computation over packet headers as long as the result

fits the size of unused header bits. To verify a packet, the

downstream middlebox follows the same tag computation and

verifies whether the result matches the tag carried in the packet

header. However, it is more challenging if the downstream

verification device is the egress switch. Unlike middleboxes,

switches cannot compute tags over packet headers upon line

speed forwarding. They simply follow rules to match against

packet headers. Therefore, we generate tags for the egress

switch to verify by a secret mapping from certain header bits.

The preceding mapping is accordingly implemented through

tag verification rules, which are populated to the egress switch

by the controller. Consider, for example, when we simply use

the first bit of a packet header as the probabilistic tag. Then

corresponding verification rules can be configured as [Priority:

high; Matching: FirstBit = 0, ptag = 0; Action: pass], [Priority:

high; Matching: FirstBit = 1, ptag = 1; Action: pass], and

[Priority: low; Matching: FirstBit = *, ptag = *; Action: alarm].

With the single-bit probabilistic tag, we expect that an attacker

can forge a correct tag with a probability of 1

2
. If the attacker

knows the mapping principle, it can deduce which bit is in

use and how it is mapped by statistical inference. For example,

given two packets with the same probabilistic tag, bits with the

same index but different values can be filtered. The attacker

may quickly pinpoint the bit for mapping the probabilistic

tag. Therefore, the mapping strategy should be sufficiently

complex to combat statistical inference. Meanwhile, it should

be practically efficient in that the number of tag verification

rules fits TCAM capacity on the egress switch.

We propose a multi-tag verification technique to address

the tradeoff between inference resistance and TCAM usage.

Section V details this technique alongside the design of tag

generation and verification between a middlebox and the

egress switch. Prior to that, Section IV first presents the design

of tag generation and verification between two middleboxes.

IV. DESIGN: MIDDLEBOX VERSUS MIDDLEBOX

In this section, we present the packet processing logic

of FlowCloak-enhanced middleboxes. As discussed in Sec-

tion III-B, tag generation and verification are highly coupled.

Both of them depend on whether the operation is between

middleboxes or between a middlebox and the egress switch.

This section focuses on between-middlebox operations based

on hashing.
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Fig. 4. FlowCloak-enhanced middlebox’s packet processing logic.

A. Middlebox Packet Processing Logic

FlowCloak augments a middlebox with two major compo-

nents, that is, tag generation and tag verification. As shown in

Fig. 4, only middlebox-processed (i.e., tagged) packets need to

undergo tag verification. To differentiate tagged packets from

untagged ones, we can leverage the property that unused bits

are set to zero by default. Untagged packets are directly fed

to the packet processor (i.e., the original middlebox function)

while tagged packets are treated so only if they pass tag

verification. (A potential attack to bypass a middlebox by

setting dtag as zeros is addressed in Section IV-C.) We steer

packets to the packet processor prior to tag generation because

some middleboxes like NAT may modify packet headers.

If we direct packets to tag generation first, the downstream

verification device may get a different packet header than that

used for tag generation and thus fails tag verification.

B. Tag Generation

A FlowCloak tag consists of a deterministic tag (dtag) and

a probabilistic tag (ptag). The dtag is pre-assigned by the

controller and is unique across middleboxes for tracking packet

processing states [11]. It should be non-zero for differentiating

tagged and untagged packets. The ptag is computed by hashing

if the downstream detection device is a middlebox or is chosen

by mapping if the downstream detection device is the egress

switch. To enable a middlebox to differentiate the two cases,

the controller preloads to it a map of its downstream detection

devices and corresponding flows. In this section, we focus on

the middlebox case. Since we first tag a packet with the dtag

that varies across middleboxes (Fig. 4), we avoid generating

ptags over the same packet header at different middleboxes.

We thus can use identical hashing parameters on middleboxes

for ease of configuration. It is straightforward to tailor these

parameters for middleboxes toward higher robustness; we omit

investigating such enhancement hereafter. Formally speaking,

let PktHdrdtag denote the packet header with dtag embed-

ded and Sample(PktHdrdtag) the sampled bits therein. A

middlebox generates ptag for another middlebox to verify as:

ptag = Hash(Sample(PktHdrdtag)), (1)

where Hash(·) is the adopted hash function that hashes an

input to an output uniformly at random across the output space

and is hard to reverse engineer using input-output pairs.



C. Tag Verification

On-middlebox verification passes a packet if it satisfies two

conditions. First, the packet comes from the correct previous-

hop middlebox or it has not previously visited a middlebox.

This should be enforced in the “tagged?” component in Fig. 4.

Second, if the packet comes from a middlebox, the packet

should carry the correct probabilistic tag generated by that

middlebox.

The first condition is necessary against two types of in-

direct middlebox-bypass attacks. Take the policy chain S1-

S2-Firewall-S2-S3-IPS-S3-S4-Proxy-S4-S5 as an example. In

the first attack, compromised S2 may make a packet bypass

Firewall and set its dtag to zeros without forging ptag.

Without precaution, the next-hop middlebox IPS regards the

packet unnecessary to verify as if it were the first encountering

middlebox and proceeds to subsequent processing. In the

second attack, compromised S3 may relay a packet tagged by

Firewall to S4 and then Proxy while bypassing IPS. If Proxy

simply verifies the packet’s ptag as if it were generated by

Firewall, the verification will succeed and so will the attack.

To enable a middlebox to detect the preceding two attacks, the

controller preloads to it a map of its previous-hop middleboxes

and corresponding flows. Mismatch of the dtag and that of the

corresponding previous-hop middlebox fails tag verification

and triggers an alarm.

After the first condition is verified, the middlebox proceeds

to verify the second condition, that is, the correctness of

ptag. Following the synchronized tag generation policy, the

middlebox first generates a tag ptag′ by Equation 1. If

ptag′ is equal to the ptag carried in the packet header, tag

verification succeeds and the middlebox directs the packet to

subsequent processing components (e.g., Packet Processor and

Tag Generation in Fig. 4). Otherwise, tag verification fails and

the middlebox triggers an alarm.

V. DESIGN: MIDDLEBOX VERSUS EGRESS SWITCH

In this section, we present tag generation and verification

design between a middlebox and the egress switch. Two chal-

lenges arise from the egress switch’s capacity constraint re-

garding computation and storage. Since SDN switches support

only simple matching rather than more complex computation

on packet headers, we adopt a mapping scheme that maps

certain bits in a packet header to a probabilistic tag. The map

is preloaded on middleboxes and emulated via tag verification

rules on the egress switch. As discussed in Section III-B, more

verification rules enhance inference resistance but aggravate

TCAM scarcity. We propose a multi-tag verification technique

to guarantee inference resistance with a practically affordable

number of rules. This technique enables the egress switch to

leverage pipelined flow tables, which has been supported since

OpenFlow Switch Specification Version 1.1.0 in 2011 [26].

A. Motivation: Multi-tag Verification

The multi-tag verification technique addresses the tradeoff

between inference resistance and TCAM usage by breaking tag

verification rules into a pipeline of flow tables. A major benefit
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Fig. 5. Multi-tag generation using preloaded maps on a middlebox.

of this technique is drastically shrinking the number of rules.

Formally speaking, take a number of resulting flow tables Ti,

each with a number |Ti| of tag verification rules. The multi-tag

verification technique can decrease rule count from O(Π|Ti|)
to O(Σ|Ti|). Consider an example with 210 = 1,024 rules for

mapping 10 bits in a packet header to a 10-bit probabilistic

tag. If we divide the mapping process to two 5-to-5 mapping

subprocesses, we need only two 25 = 32-rule flow tables. Then

the total number of rules drops to 32+32 = 64 instead of much

larger 32× 32 = 1,024. Another benefit is that pipelined flow

tables enable variable rule lengths [27]. The preceding two 5-

to-5 mapping flow tables cost (5 + 5)× 32× 2 = 640 bits of

matching fields; this approximates the size of only a number
640

288
≈ 3 of 288-bit 10-tuple OpenFlow rules [24]. Without

the multi-tag verification technique, the 10-to-10 mapping flow

table costs (10+10)×1024 = 20,480 bits, which approximate

the size of 20480

288
≈ 72 OpenFlow rules. Furthermore, if we

simply place the 1,024 rules in the original flow table, they

would occupy the space of 1,024 OpenFlow rules. Our design

therefore promises an affordable overhead of TCAM usage.

B. Tag Generation on Middlebox

Design. Preloaded with multiple mapping schemes, a mid-

dlebox generates a probabilistic tag ptag via multiple partial

tags. For each partial tag, we choose non-consecutive and

shuffled header bits and map them to non-consecutive and

shuffled bits in ptag. As shown in Fig. 5, we first decide

which mapping scheme to use by an indicator generated by

chosen bits in the packet header. An x-bit indicator supports

switching among 2x mapping schemes. We compute an x-bit

indicator using sliding-window XOR over x or more chosen

header bits. By sliding-window XOR, the window size is x

bits and the sliding size is one bit. In the illustrated example,

we generate a 10-bit ptag out of a 32-bit toy packet header.

Since two mapping schemes are given, we need only a single-

bit indicator for deciding which scheme to use. Six bits are

used for computing the indicator using sliding-window XOR.

The indicator result is 0; so mapping scheme 0 is selected.

Under mapping scheme 0, the middlebox generates the 10-bit

ptag by mapping 5, 3, and 6 bits to three partial tags of 3,

3, and 4 bits, respectively. The middlebox then merges these

partial tags to compose ptag.

Speed. We achieve fast tag generation by generating partial

tags in parallel and enabling fast searching over maps. First,

once a mapping scheme is selected, generating partial tags
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Fig. 6. FlowCloak’s flow table pipeline logic on the egress switch.

based on different maps can run in parallel. This upper

bounds the generation time by O(max(ti)) instead of O(Σti),
where ti denotes the partial-tag generation time over the i-th

map. Second, the partial-tag generation process over a map

resembles a search process. Consider for example a map with

m-bit inputs. If we simply store the map as an array, then

each round of the search process compares two m-bit strings;

it invokes O(2m) rounds of such comparison in the worst case.

To minimize search time, we can store the map as an m-level

tree. The internal nodes correspond to bits in each entry of

the map; the leaf nodes correspond to partial tags. Based on

such a tree, partial-tag generation requires a constant number

of O(m) rounds of single-bit comparison. Another leap of

search speed takes place when the number of entries is small.

Consider when m = 5 for example. Now we have 25 = 32
entries. We can sort the entries in an ascending order of the 5-

bit inputs and store the map as an array with each item indexed

by a 5-bit input and assigned as the corresponding partial tag.

In this case, we enjoy a constant O(1) search speed.

Robustness. Our tag generation mitigates statistical inference

in four directions. ¶ Using more input bits than tag bits leads

to intrinsic collisions where two different sets of input bits

map to the same tag. Given two different packet headers

with the same tag, the attacker can hardly know whether

it is due to intrinsic collision or due to the set of chosen

bits are with the same values in both packet headers. This

makes it pointless for the attacker to simply filter different-

value bits. · Several possible mapping schemes to use make

same-value bits map to different tags. Moreover, as we use

XOR to compute the indicator, even one flipping bit in the

ones for computation might generate a different indicator.

Therefore, it is also pointless for the attacker to simply filter

same-value bits upon different tags. ¸ The attacker may not

know whether a middlebox’s next hop is another middlebox

or the egress switch (Section III-B). This makes inference

even more infeasible. ¹ Given that thousands of rule updates

per second are supported by current switches [31], we can

periodically refresh the mapping schemes on middleboxes and

tag verification rules on the egress switch. Different mapping

schemes make the same packet header map to different tags.

This significantly confuses the attacker.

C. Tag Verification on Egress Switch

Our multi-tag verification technique enables the egress

switch to leverage a flow table pipeline to save TCAM

space. Since traversing multiple flow tables introduces delay,

a goal for configuring the pipeline is that such delay impacts

only middlebox-processed packets. In other words, we ex-

pect that non–middlebox-processed packets still go through

rule-matching only once. To achieve this goal, we lead the

pipeline with the original flow table. As shown in Fig. 6, we

assign rules matching expectant middlebox-processed packets

with higher priorities than we assign to rules matching non–

middlebox-processed packets. For middlebox related rules, we

modify their actions to direct the matching packets to the next

flow table (i.e., Goto-Table instruction [26]).

For packets arriving at the second table, tag verification is

enforced via a pipeline of flow tables. As Fig. 6 shows, the

second table selects the mapping scheme. Given, for example,

two mapping schemes in use and six bits for computing

the indicator (Fig. 5), the second table contains 26 rules.

All their matching fields enumerate all instances of a six-

bit string. For each rule, if the XOR result of the six bits

is zero, then its action is go to the table corresponding to

mapping scheme 0. Otherwise, the action is go to the table

corresponding to mapping scheme 1. Each mapping scheme

consists of a pipeline of flow tables, with each verifies a partial

tag. Consider such a flow table that verifies p-bit partial tags

mapped from h header bits. It contains 2h rules. The format

of a verification rule therein is as follows.

• The matching field is an instance of the h-bit string and

the corresponding p-bit partial tag.

• The action is go to the next table for verifying another

partial tag.

Only when a packet matches with a verification rule can it pass

verification. For non-matching packets, we use an all-wildcard

rule to trigger an alarm to the controller. A packet passes tag

verification only if it passes all partial-tag verification.

After tag verification, packets enter the ending flow table

that contain rules for processing verified middlebox-processed

packets. It should be a subset of the original flow table. We

extend their action fields such that the egress switch zeros all

tag fields before it forwards the packets.

VI. IMPLEMENTATION

We implement FlowCloak using Snort [32], the most widely

deployed IDS/IPS with over 500,000 registered users. As a se-

curity middlebox, Snort detects emerging threats based on var-

ious techniques (e.g., packet logging and real-time traffic anal-

ysis) and filters attacking traffic. Given that Fayazbakhshthe et

al. [11] have already demonstrated the feasibility and limited

overhead of modifying middleboxes to support packet tagging,

we adopt only Snort as a use case and focus more on how

to implement our tagging scheme that can combat the newly

identified middlebox-bypass attack.

Our modification empowers Snort to generate and verify

probabilistic tags (Fig. 4). Both generation and verification

functions are called in the file /src/snort.c. The generation

function is called at the beginning of ProcessPacket(·), by

which Snort starts processing an incoming packet. The ver-

ification function is called at the end of PacketCallback(·),
by which Snort directs the processed packet to subsequent

components. The implementation of the generation and veri-

fication functions mainly include hashing, bit-wise operation,
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Fig. 7. Header dynamics over 5,000 locally sniffed co-flow packets.

and map searching over packet headers. We adopt the FNV-

1a hash function [33] because it well randomizes the hash

results of similar inputs. We encode preloaded maps in a way

that an O(1) search complexity is achieved (Section V-B).

Our modification accounts for 387 lines of C code while

the original code base of Snort contains over 293,000 lines.

Besides, a 250-line library from [11] is used for supporting

controller-middlebox communication.

We build FlowCloak using ODL Carbon as the controller,

OVS v2.5.3 (with long-term support) as switches, and Snort

2.9.9.0 [32] as middleboxes. We interconnect the preceding

elements into a network using Mininet 2.2.2.

VII. EVALUATION

In this section, we evaluate the performance and robustness

of FlowCloak. We first conduct a trace-driven measurement

of packet-header dynamics. The results show that sufficient

frequently-changed bits in the headers of co-flow packets

can be sampled to generate probabilistic tags. The generated

probabilistic tags follow a uniform distribution and leave an

attacker with no advantage over random guessing. Limiting

the success rate of random guessing under 0.1%, a 10-bit

probabilistic tag requires memory overhead of only dozens of

rules on the egress switch. Limited packet processing delay is

imposed by FlowCloak on middleboxes and the egress switch.

Experiment setup. Our FlowCloak prototype runs on a Dell

PowerEdge R730 server with 30 MB cache, 24 2.3-GHz

Intel(R) Xeon(R) CPUs (E5-2670 v3), and 128 GB memory.

Since we use only Snort as a use case (Section VI), we create

multiple Snort instances to emulate a multi-middlebox policy.

Each Snort instance runs in a virtual machine and allocated

with 8 GB memory and 2 CPUs.

A. Feasibility: Packet Header Dynamics

The dynamics of header fields/bits are key to randomize

probabilistic tags, especially for those to be verified by the

egress switch. We conduct a trace-driven measurement us-

ing packets with various transport protocols. The measuring

methodology counts packet-wise bit flips for each co-flow

packet header. We initialize the count of a bit as zero; we

increment it by one if the bit flips in two consecutive packets

and keep it intact otherwise. Due to space constraint, we report

only TCP results because TCP represents 90% of fixed Internet

traffic and 96% for mobile Internet traffic [34].

Fig. 7 reports header dynamics over locally sniffed 5,000

co-flow packets. We concentrate on IP and TCP headers, which

are matched by most SDN rules. 53.8% of the 320 bits demon-

strates bit flips among consecutive packets. 6 bits change more
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Fig. 8. Frequency distribution of probabilistic tags generated by (a) hashing
and (b) mapping over 5,000 locally sniffed co-flow packets.

than 4,600 times while the most frequent one hits 4,957. 18

bits change over 50% of the packet-wise comparisons. 24 bits

change more that 1,000 times; they represent part of Identifier

and Header Checksum in IP header and part of Sequence

Number and Checksum in TCP header. Given that less varying

bits and even static bits (e.g., source/destination IP addresses)

can also be useful (Section V), we have sufficient choices of

header bits to map them to, say, 10-bit probabilistic tags.

B. Efficacy and Robustness: Probabilistic Tag Distribution

While eliminating the concern of various inference attacks

in Section V-B, we further investigate the distribution of

probabilistic tags to make sure that an attacker can obtain no

advantage over random guessing. If the distribution is biased

toward certain tags, the attacker may use such tags to increase

success rate. Our results show that probabilistic tags generated

by FlowCloak resemble a uniform distribution, which well

confines the attacker to random guessing.

Fig. 8 reports the distribution of probabilistic tags generated

by (a) hashing and (b) mapping. Hashing-based tags are for

middleboxes to verify while mapping-based tags are for the

egress switch to verify. Given a 10-bit probabilistic tag in

use and 5,000 co-flow packets to consider, we expect that the

average number for a tag to appear is 5000

210
= 4.9. Satisfying

this expectation, both distributions peak when the number of

appearance is 4. For the mapping scheme, we test different

settings and the results are consistent.

Another sweet spot of robustness is that FlowCloak does

not passively endure the attacker to keep guessing and issuing

incorrect tags. It triggers an alarm whenever an incorrectly-

tagged packet is detected. Furthermore, refreshing mapping

schemes helps nullify the attacker’s inference efforts.

C. Overhead: Memory and Latency

TCAM overhead by tag verification rules on the egress

switch. We conduct extensive experiments on generating 10-

bit probabilistic tags using various mapping schemes. Dozens

of tag verification rules suffice to emulate all test mapping

schemes and satisfy uniform tag distribution. For example,

when we map 20 bits to a 10-bit tag. We can use a pipeline

of 5 flow tables, each for a 4-to-2 mapping. Then the number

of rules is 24 × 5 = 80.

Latency by tag generation/verification on middlebox.

FlowCloak-enhanced Snort performs additional tag genera-

tion/verification over packet headers. Fig. 9(a) compares its

packet processing latency with that of the original Snort. The

original Snort takes 4.6 ms in average to process a packet
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while FlowCloak-enhanced Snort 4.9 ms. A delay of as low

as 0.3 ms demonstrates FlowCloak’s high efficiency.

Latency by tag verification on egress switch. Middlebox-

processed packets go through a pipeline of flow tables for

verification on the egress switch. We compare in Fig. 9(b)

the packet processing latency using different numbers of flow

tables. To eliminate the impact of other network elements, we

create a network with only one switch (as both ingress and

egress) and two end hosts. The only switch is configured with

multiple tables containing tag verification rules. We craft test

(1,500-byte TCP) packets in advance by feeding them into

Snort for tagging. Then we send the tagged packets via one

end host at different bitrates. To our surprise, no obvious delay

is observed upon the use of pipeline processing. We consider

this reasonable because traversing several flow tables requires

only several more map searches of high speed.

VIII. CONCLUSION

We have presented our newly identified middlebox-bypass

attack to breach SDN-based middlebox policy enforcement

and proposed FlowCloak solution. FlowCloak enables mid-

dleboxes to mark packet headers with tags probabilistically

unknown to an attacker. The tagging strategy, however, is

synchronized across middleboxes and the egress switch for

packet verification. If an attacker manipulates a compromised

switch to bypass attacking traffic from the attached middlebox,

it has to forge correct tags to evade detection. FlowCloak

confines the attacker to only random guessing. We implement

FlowCloak using Snort. Experiment results show that Flow-

Cloak can achieve accurate detection with negligible overhead.
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