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Abstract—The control plane of Software-Defined Networking
(SDN) is the key component that oversees and manages networks.
However, involving design or logic flaws in its policy enforcement
and network control is inevitable, which can cause it to behave
incorrectly and induce network anomalies. Unfortunately, exist-
ing approaches mainly focus on policy verification or fault trou-
bleshooting with little fault localization capability for repairing
these flaws in production environments. In this paper, we present
FALCON, the first FAult Localization tool for SDN CONtrol
plane. We design a novel causal inference mechanism based on
differential checking, which symmetrically compares two system
behaviors with similar processes and identifies the causality in
related code execution paths with concrete contexts to explain why
a fault happened in the SDN network. Our main contributions
include 1) a lightweight rule-based dynamic tracing mechanism
for recording system behaviors of the SDN control plane, 2) a
context-aware modeling mechanism for modeling these behaviors,
and 3) a differential checking mechanism for localizing controller
faults according to formulated symptoms. Our evaluation shows
that FALCON is capable of localizing faults in SDN control plane
with low overhead on performance.

I. INTRODUCTION

Separated from the data plane, the SDN control plane (CP)
is logically centralized for networking. It leverages southbound
protocols (e.g., OpenFlow) to govern traffic in the data plane,
and exposes various northbound interfaces (NBI) for external
applications to access networks. In current SDN solutions
[1]–[3], the CP performs as a network operating system
with various core and application modules1, where network
management policies are transformed as modules’ code logics
and mutual dependencies. The modular nature of SDN CP is
the significant feature that guarantees the flexibility of network
service deployment.

Unfortunately, SDN CP is error-prone as a software system
meeting with complicated network dynamics [5]–[11]. The
controller is typically reactive and event-driven that it detects
input events (e.g., OpenFlow messages and NBI requests),
processes them and takes actions following specific code
logics. Thus, the root causes behind faults in SDN (e.g.,
forwarding loop and incorrect NBI responses) are typically
flaws in these logics [7], [9]. However, it is difficult to find
out them, since the logics behind may be non-deterministic2
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1It is also called application agent [1], plugin bundle [4] or control program
[5]. We use them interchangeably.

2With the same input, the controller may behave differently in each execution.

(i.e., context-dependent), cross-module and mixed with SDN
network’s asynchrony and concurrency [7], [8].

To localize root causes of faults in SDN CP, unfortunately,
existing solutions have some limitations: 1) Some research
efforts [5], [12], [13] use formal methods to verify the
correctness of network policies or abstract program models.
However, they rely on manual or static analysis to model
policies or programs, which is time-consuming, error-prone
and cannot handle dynamic changes of network and software
in production environments; 2) Blackbox testing is another
approach to identifying the input event set which can cause the
controller to fail [7], [8]. However, given the set, operators still
need to manually localize the root cause inside the CP. Hence,
how to diagnose faults in SDN CP is still an open issue. SDN
networks involve data, control and application planes, which
makes previous network or software diagnosis mechanisms
inapplicable. We need to track behaviors of all these planes
and touch the inner side of the SDN CP to point out which
part and why the part goes wrong.

In this paper, we design FALCON, the first fault localization
system, which can identify the detailed root causes of faults
in SDN CP to help operators quickly repair them. FALCON
utilizes a rule-based dynamic tracing mechanism to precisely
trace the system behaviors of SDN at runtime, including
interactions between adjacent SDN planes and program execu-
tions inside the CP. It further models these behaviors through
a deterministic context-aware model mechanism and mines
dependencies among models as the collaborative behaviors
in SDN networks. The normal behavior models are regarded
as diagnosis references. When faced with a failure, FALCON
identifies the faulty models and corresponding references and
then performs a differential checking mechanism to point out
their differences. Finally, by finding the causality with static
analysis, FALCON answers not only how the fault occurred
with a minimal set of input events, but also why it can
occur with a minimal set of state differences in relevant
code execution paths. We build a prototype for OpenDaylight
(ODL) [2] controllers to evaluate FALCON with several types
of faults. The result attests its capability to reveal root causes.
Moreover, it introduces a low overhead for controller’s net-
work management, even optimizes partial events’ processing
thanks to bytecode instrumentation, e.g., 36.3% throughput
improvement on average in processing RESTful requests.

The rest of the article provides the background and related
work (§II), describes the overview of FALCON (§III) and the978-3-903176-15-7 c© 2019 IFIP



details of its design and implementation (§IV, §V, §VI, and
§VII), presents evaluation results (§VIII) and concludes (§IX).

II. BACKGROUND AND RELATED WORK

A. Faults in SDN control plane

To present a deep understanding of SDN faults, we survey
controller-related faults (also called bugs) found in literature
[5]–[10] and report the first analysis of faults in a real SDN
controller bug repository, ODL Bugzilla [14], in which we
analyze all 298 confirmed bugs of ODL kernel projects [4]
until October 16, 2017. For clarity, we classify these faults
into three categories according to their root causes as follows:
Logic/design flaw (66%): To manage networks, various net-
work policies are implemented in SDN control software with
specific code logics. However, due to insufficient domain
knowledge or misplaced assumptions, these logics may not
always be designed correctly and even conflict with each other
[5], [7], [15]. For example, input events in some specific order
may hit some corner cases (which are not considered in current
SDN CP design), and be processed incorrectly or discarded
directly, even trigger harmful race conditions [10]. We name
this type of faults logic/design flaw.
Coding mistake (12%): Careless programming in code logic
implementation can cause a variety of software or network
errors, e.g., data race, null pointer, and incorrect rule dis-
tribution. Although many coding mistakes can be found and
handled promptly in coding or testing stage, it is not possible
to exhaust all of them, e.g., incorrect usage of service identifier
[16]. In addition, there may exist a lot of unreasonable memory
allocations in the controller that can cause it to crash [6].
Performance anomaly (22%): SDN controllers often suffer
from centralized bottleneck problems in practical applications
[6]. Apart from this, their inherent asynchrony and concur-
rency also exacerbate these issues [6], resulting in various fail-
ures, e.g., partial failure in batch operation, message timeout
or omission, data race, and even system crash.

According to our measurement, Logic/design flaw is the
most popular category (66%) in all analyzed faults, and it
usually has a higher need for diagnosis [14]. Furthermore, we
observe that almost all logic/design flaw bugs and some bugs
in the other two categories can raise abnormal code execution
traces in control software [5], [7], which are deviated from
execution traces when the faults are not triggered.

B. Related Works

Given that the SDN controller is a software entity, many
approaches based on general software diagnostic techniques
have been proposed, including controller troubleshooting (CT)
[7], [8], [10] and program analysis (PA) [5], [12], [13]. Since
the CT-based approaches leverage blackbox testing to find
defects in the controller, they may fail to provide detailed
root causes of occurred faults; PA-based approaches rely on
formal models of controller software or network policies,
which are often error-prone and inaccurate. Different from
them, FALCON dynamically traces the SDN system behaviors
at runtime and further parses them with static code analysis,

thus it can provide detailed root cause analysis of faults in
dynamic SDN networks.

III. OVERVIEW OF FALCON

In the SDN field, the fault diagnosis problem is more
complex than the one for common software, since SDN CP
needs to simultaneously process dynamic network events from
the data plane and collaborative northbound requests from
the application plane. We need to identify not only relevant
internal executions in SDN controllers, but also interactions
among these planes, and associate these behaviors with the
occurred failure as an understandable diagnosis result. To
address such problem, we leverage two major properties of
SDN CP faults to design our fault diagnosis mechanism:
(1) Incorrect internal executions. As described in §II-A,
most faults in SDN CP are caused by logic or design flaws,
which violate correct program logics and cause deviations
from correct program executions. Specifically, the controller
follows context-dependent code logics to process input events,
due to defective design and implementation of these logics,
changes in contexts may trigger an unexpected run that cannot
be handled properly [7], [9], [10].
(2) Disordered input events. The interactions between SDN
control and other planes often follow some fixed orders,
which are defined in southbound protocols or code logics
in controllers and applications for collaborative services. The
disorder of input events can induce a different set of internal
invocations inside SDN CP which may trigger failures. For ex-
ample, to build an OpenFlow connection, a series of messages3

are generated in order between the switch and controller, the
disorder of these messages will trigger a failure [7].

Based on these properties, we design FALCON, a differential
fault localization system, to localize the root cause of a
failure in the SDN network which suggests the presence of
a fault in the CP. To diagnose faults in the SDN environment,
firstly, we design a rule-based dynamic tracing mechanism to
record running contexts. We then propose a context-aware
modeling mechanism to cluster trace data and model their
causal relationships with concrete contexts as a context-aware
behavior model, with which we aim to provide deterministic
models for system behaviors in SDN CP. Given a failure,
we formulate symptoms occurred in different planes as the
diagnosis input and design a differential checking mechanism
to localize the root causes. By comparing faulty and correct
system behavior models, we aim to identify the minimal but
sufficient system behaviors with concrete contexts and succinct
code execution paths as the diagnosis report.

Fig. 1 depicts the architecture of FALCON, which con-
tains two parts: a production environment and a simulation
environment. In the production environment (Fig. 1(a)), we
deploy a trace agent inside a controller and an online monitor
outside of the controller. The trace agent traces activities in
the controller at runtime. The online monitor collects trace
3Only if two OFPT_HELLO messages for protocol version negotiation are
successfully processed, can the standard OpenFlow messages be exchanged,
e.g., OFPT_FEATURES_REQUEST, OFPT_PACKET_IN [17].
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Fig. 1: An overview architecture of FALCON.
data from the trace agent, models them as system behavior
models and stores them as references when there is no
fault. When a failure occurs, we transmit the recent behavior
models to the simulation environment (Fig. 1(b)) for fault
diagnosis, in which a new controller is instanced with the
same configuration and internal states of the production one
through controller restore mechanisms [18], [19]. We leverage
an event replay engine to simulate the data/application planes
and reproduce practical failures by replaying collected input
events. The offline diagnosis system performs the differential
fault localization to identify the causality of a fault and output
it as the diagnosis report. The usage of the two environments
can guarantee both the authenticity of the diagnosis data and
the accuracy of the diagnosis results.

IV. DYNAMIC SYSTEM BEHAVIOR TRACING

We now present a dynamic system behavior tracing mecha-
nism based on bytecode instrumentation for recording SDN
system behaviors. Performing instrumentation on bytecode
requires neither modification of controller’s source code nor
restart of the controller. We design a rule-based instrumenta-
tion mechanism to ease the configuration of dynamic tracing
and control it to a relatively coarse granularity, module-level,
to reduce the overhead.

A. Dynamic Tracing

Dynamic tracing can provide sensitive execution informa-
tion of the SDN CP at runtime. However, it is often costly. As a
software entity, given some key dynamic execution points and
corresponding contexts, we can recover the entire execution
path through static analysis. Thus, to find a feasible granularity
of dynamic tracing, we leverage the following observations
of mainstream SDN controllers [2], [3]: 1) Their modular
nature indicates that their most of event processing tasks are
handled under the collaboration among multiple modules; 2)
Invocations among modules depend on pre-defined module
interfaces, e.g., RPC and Notification; 3) Faults in controllers
may originate inside a module and propagate to other modules
through invocations or database operations. Hence, a module-
level dynamic tracing that traces invocations through these
module interfaces is enough for providing dynamic contexts,
which can highly reduce the amount of inserted codes, thereby
greatly decreasing the overhead than a method-level tracing.

B. Rule-based Instrumentation

To trace controllers, it is, however, challenging for operators
to determine where and what code can be instrumented,

public class PacketDispatcher {
public void dispatchPacket(payload, ingress, srcMac, destMac) {

0:  NodeConnectorRef src = inventoryReader.getControllerSwitchConnectors(srcMac);
1:  NodeConnectorRef dest = inventoryReader.getNodeConnector(destMac);
2:  if (src != null)
3:    if (dest != null) sendPacketOut(payload, src, dest);
4:    else floodPacket(nodeId, payload, ingress, src);

} }

Match Action
212 PacketDispatcher dispatchPacket 3+sendPacketOut+B Thread, event, payload, src, dest, etc.

Fig. 2: An in-rule example for Packet_Out.
especially for these unfamiliar with bytecodes. To address this
problem, we design a rule-based instrumentation mechanism to
help operators ease this process, in which the expectant tracing
feedback is specified in instrumentation rules (abbreviated as
in-rules). An in-rule is a <match, action> tuple (see
Fig. 2). The match field is used to match against bytecodes
and specify where to insert codes, which consists of three
name (module, class and method) and one location
(call site) sub-fields. The three name sub-fields follow
the code hierarchy to focus the in-rule on the method’s code
snippet. The call site further localizes the instrumentation
with a line number and a location (B(before) or A(after))
of a bytecode instruction in the snippet. The action field
defines execution contexts that need to be profiled, e.g., thread,
timestamp, invocation type, and variable values.

Covering expected traces by manually specifying in-rules
is unfeasible. FALCON only requires operators to specify the
in-rules for capturing input/output messages (e.g., RESTful
requests and OpenFlow messages) and list the concerned mod-
ule interfaces. Then, FALCON transforms the corresponding
bytecodes into control flow graphs (CFGs) to search invoca-
tions of these interfaces and automatically generate in-rules
for tracing them. Finally, with these inputs and generated in-
rules, FALCON translates them into bytecodes to instrument the
SDN controller. At runtime, these execution contexts defined
in in-rules will be profiled and output as trace messages.

V. SYSTEM BEHAVIOR MODELING

Given trace messages, we construct system behavior models
of the SDN system at runtime: first, we process heavily
interleaved trace messages and identify relevant internal in-
vocation nodes and their causal relationships to construct a
context-aware model; we further perform backtrace on these
models with static analysis to mine the dependencies among
them, which can make our models be accurate to capture
collaborative properties in the SDN system.

A. Context-aware System Behavior Modeling

To process input events (i.e., controller tasks), the controller
maintains multiple event handlers, each of which uses multiple
threads to execute different operations. Each operation is
executed in a thread with several synchronous invocations
and may also involve other operations through asynchronous
invocations (see Fig. 3). A task may produce multiple het-
erogeneous trace graphs due to non-determinism, each having
a specific context for different conditional branches (e.g.,
if· · · else in Fig. 2). We model such behaviors as follows:
Trace graph: Once getting a trace message, FALCON trans-
forms it into a graph node according to its event type and clus-
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ters it into a growing chain graph of an operation according
to its thread ID. A chain graph is a set of synchronous nodes
linked with their happen-before (HB) relationships. Since there
is no identifier propagated through asynchronous invocations,
we design a multi-identifier correlation mechanism for com-
bining these chain graphs for the same task. Specifically, we
construct a tuple containing multiple identifiers (including the
caller’s thread ID, location in its chain graph, timestamp,
variable-value hashcode, and a parent-child graph path) to
define existing asynchronous callers and match new coming
asynchronous callee nodes. Finally, all chain graphs of a task
are combined into a trace graph.
Context-aware model: CAM contains three kinds of edges
(see Fig. 4): 1) A concrete edge has a pair of nodes repre-
senting their HB relationship; 2) A fork edge has multiple
succeeding nodes (one is a concrete successor and others are
asynchronous callees); 3) A contextual edge’s succeeding node
varies in specific contexts (i.e., condition values), which mod-
els data-dependent code logic. We say that in the code logic
of a concrete edge, if there is a conditional branch varying the
edge’s succeeding invocations according to contexts, the edge
is then transformed into a contextual edge with an additional
context field to record the branch. Taking Fig. 5 for example,
we combine heterogeneous trace graphs of a task into a CAM.
Given two graphs (a) and (b) with their different contexts, we
identify the conditional branch that leads to the two different
edges (e1) from the CFG of corresponding bytecodes. Then,
we combine the two edges into a contextual edge (ce1) with
the branch that decides the succeeding nodes according to their
contexts. Fig. 5(c) depicts the final CAM, in which from Vb

has two possible succeeding nodes: Vc and Vd.

B. Augmentation with Model Dependency

Since SDN controllers are event-driven, their contexts are
introduced by external events from data and application planes,
e.g., OpenFlow messages and NBI requests. Thus, contexts in
conditional branches come from their input event or previous
tasks. Taking Fig. 2 for example, the action (send PacketOut
or flood packet) of processing a flow rule request depends on
the existing of the destination host in the controller’s database.
Mining such dependencies among task models can further
address non-determinism and provide references in another
dimension for diagnosis.
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Fig. 5: An example of a trace graph combination.
Some faults are context-dependent. Thus, we start from

these conditions’ contexts in contextual transitions to identify
model dependencies. A context can be introduced by a single
input event or a set of input events in a specific order. Hence,
given a context c, we iteratively backtrack current and previous
models to search operations that insert/update its value and
identify the corresponding input event or input event sequence.
If c is introduced by a previous input event Is with input value
set s, we say that the current task model contextually depends
on Is. With such dependencies, we further augment CAMs.

VI. DIFFERENTIAL FAULT LOCALIZATION

In this section, we discuss how FALCON diagnoses failures
according to their symptoms with mined models. The fault
localization consists of 3 phases: 1) parsing the failure symp-
tom to locate the faulty models and their normal references;
2) symmetrically comparing them to find the differences; 3)
performing static analysis from their differences to identify the
related conditional branches and contexts.

From the controller’s perspective, the failure symptoms may
be explicit that we directly find anomalies from the controller,
e.g., error log messages or code exceptions; or implicit that
failures occur in other planes with no error reported in the
CP, e.g., network problems or unexpected NBI responses. To
perform diagnosis with these symptoms, we formulate them
with the following syntax:

’time’ : (’timestamp’ | null)
’type’ : (’REST’ | ’log’ | ’flow’ | ’rule’ )
’request’: (’method’ & ’url’ & ’payload’

& ’response content’
& ’response status’)

’log’: (’status’ & ’content’)
’flow’: (’messageType’ & ’switchID’

& ’OFVersion’ & ’content’)
’rule’: (’switchID’ & ’ruleID’

& ’match’ & ’action’)

Faulty model locating: Given a symptom, FALCON then
searches the faulty models and their references. An explicit
symptom typically has a recorded timestamp, so FALCON can
identify faulty models based on it and other characteristics in
the symptom. For implicit symptoms without precise times-
tamps, FALCON starts from the latest model to search related
faulty models which are different from their references.
Differential checking: In this phase, FALCON systematically
compares the faulty and the reference models from their root
nodes to locate their differences. Taking Fig. 6 for example,
there are two heterogeneous models (Run 1 and 2) triggered
by the same NBI request I with different contexts (S1 and S2),
and Run 2 leads to a failure. It is evident that the controller
programs after Vb cannot run properly under the contexts S2

of Run 2. Thus, to reason about the failure, we need to report
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Fig. 6: An example of differential checking.
not only the differences and faulty execution path but also the
key contexts causing this deviation.
Static analysis: With the different node Vb, we conduct static
analysis on its bytecode to find out the related branch condition
and the contexts in it. A failure is usually highly correlated
with the current system state (i.e., contexts) introduced by a
sequence of events; the previous events affect subsequent ones
by modifying the contexts. So we also search input events that
have modified these contexts. Although several contexts are
involved, not all of them trigger the failure. Thus, FALCON
leverages delta debugging with the event replay engine to
eliminate unrelated contexts. In each replay, we change partial
contexts and replay the changed input event sequence to check
if the failure can still be reproduced. Finally, a minimal input
event sequence and the triggering contexts are output with
corresponding execution paths.

VII. IMPLEMENTATION

FALCON is implemented in Java with more than 10,000
lines of code, including trace agent, online monitor, offline
fault diagnosis, excluding event replay engine.
Trace Agent: It is implemented based on several mature tools.
First, we translate in-rules into codes that can be executed
by a Java bytecode manipulation tool, ASM [20], which
allows us to dynamically instrument SDN controllers and
provides control/data flow analysis on bytecode. The agent is
dynamically attached to a controller at its run-time. We then
use an inter-thread messaging library (LMAX Disruptor [21])
to deliver trace data from multiple running threads to the agent
thread which performs data transmission. Trace data and other
program data (e.g., code file location) are sent to the outside
Online Monitor through an off-heap inter-process messaging
library (Chronicle Queue [22]).
Event Replay Engine: To reproduce failures, we implement
an event replay engine which simulates both the data and ap-
plication planes and sends channel messages to the controller.
This engine is built on STS simulator [7] and we extend to
support the generation of various northbound requests and
southbound network events.

VIII. EVALUATION

To evaluate FALCON, we conduct some case studies to
assess its fault localization capability (§VIII-A), and design
several tests to measure its performance impact on SDN
controller (§VIII-B). All the evaluations are performed on a
Linux server running 64bit Ubuntu 14.04 with an Intel Xeon
E2660 v2 2.2Ghz CPU (16 cores) and 64GB RAM.

In order to instrument the controller, we write in-rules for
capturing RSETful request/response and OpenFlow (OF) mes-
sages, and tell FALCON to generate in-rules for the invocation

interfaces we concern about, including ODL core interfaces
(i.e., Restconf operations, RPC, Notification listen and Data
change listen) and some other invocation interfaces (e.g.,
Notification publish). With all these in-rules, the controller is
instrumented and ready to deliver trace messages outside.

A. Case Studies
To evaluate the effectiveness of our localization method-

ology, we selected 8 real-world faults from ODL Bugzilla
[14], reproduced them and use FALCON to diagnose them.
The overall diagnosis results are summarized in Table I.

The last column of Table I describes whether FALCON can
diagnose the root cause of the fault. We can see that for
faults from different projects with different symptoms, Falcon
always plays a positive role in revealing the root causes. For
bugs from 5033 to 8157, FALCON can successfully point
out the faulty code logics and key contexts because these
faults have sufficient reference models. As for fault without
corresponding reference model, like Bug-3345, our differential
localization mechanism cannot directly indicate the root cause,
but FALCON can provide corresponding CAMs to free the
operator from heavy log analysis task and help him understand
the fault more easily with the internal view. We don’t conduct
case studies for faults of performance anomaly, but our model
contains the time intervals between adjacent nodes, which can
be used as the basis for diagnosing such faults.

Take Bug-5816 [23] in Table I as an example. The L2switch
project’s host-expiry feature lets ODL remove hosts that have
not been observed for a long time from the network topology
view. This fault says that in L2switch’s reactive mode, hosts
expired by this feature cannot be discovered again even if ping
works and new flows get installed on switches.

After receiving the symptom, FALCON searches for models
of OF messages related to the target host, and then identifies a
deformed host-discovery model and corresponding host-purge
model. Next, it points out the problematic node in L2switch’s
Addresstracker module by conducting differential checking on
the deformed model and the reference model of host discovery.
Following static analysis shows that the culprit is the improper
TimestampUpdateInterval value configured in Addresstracker
module which makes it not update the address in time, and
the Hosttracker module cannot learn the host consequently.
Finally, FALCON confirms the root cause with replay engine
and reports the diagnosis result.

B. Performance Measurement

Deploying FALCON into a controller may decrease the
controller’s performance in processing input events. We eval-
uated this performance impact by measuring the controller’s
throughput for processing OF messages and NBI requests
under different workloads without and with FALCON (F-ODL),
respectively. Since FALCON’s instrumentation is built on ASM
which can reduce bytecode size to optimize code execution
efficiency [20], we also directly used ASM to instrument ODL
(A-ODL) by reusing FALCON’s in-rules with a simple value
add instruction action. We performed each test 30 times
and show the average results in Fig. 7.



TABLE I: Fault localization cases.
Bug ID Description Symptom Project(version) Root cause Category Diagnose

5033 AAA falsely authorizes user to restricted endpoint unexpected response aaa (B) race condition logic flaw Yes
5816 Expired hosts never comeback after timing out unexpected response l2switch (Be) constant misconfiguration logic flaw Yes
8157 Recreating a user fails after deleting it error in log message aaa (C) defective user deletion logic flaw Yes
3345 Ping will fail in ring topology when a link down unreachability l2switch (Li) incomplete topology update design flaw Indirectly
6053 NPE on port creation NPE in log message neutron (B) incomplete JSON parsing design flaw Yes
7933 NPE when posting using XML NPE in log message netconf (C) incomplete YANG support design flaw Yes
8939 Adding topology-netconf node via restconf fails error in log message netconf (N) interface migration coding mistake Indirectly
8988 NPE when adding routes to app-peer NPE in log message netconf (N) method misuse coding mistake Indirectly
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Fig. 7: Performance of ODL, ASM-ODL and FALCON-ODL
in processing input events.

OpenFlow messages: We measured the controller perfor-
mance in processing OF messages by running CBench [24], a
benchmarking tool for testing OF controllers in the throughput
mode. We started ODL with L2switch, OpenFlowplugin and
OpenFlowJava plugins. FALCON generated 98 in-rules to in-
strument their 19 functional modules. We tested the throughput
by running CBench with the number of simulated switches
ranging from 10 to 150, each of which was assigned with 200
unique MACs (i.e., simulated hosts). As shown in Fig. 7 (a), A-
ODL presented the best throughput among ODL (11.65%) and
F-ODL (6.93%) on average due to bytecode optimization. For
the same reason, when the number of switches was less than
about 85, F-ODL also achieved a better throughput than ODL.
Then, as the number of switches growing, ODL started to
achieve a better but not noticeable throughput than F-ODL. In
F-ODL, more threads need to be allocated for the delivery and
processing of trace messages, which leads to slight throughput
degradation. We believe this degradation is acceptable to most
networks for two reasons: 1) most networks often distribute
switches to multiple controllers for network reliability and
scalability [25] and 2) as measured in [26], the time to generate
a new rule after the controller receives a request could be more
than 10ms, which is far greater than the introduced delays.
RESTful requests: ODL adopts RESTful APIs as its NBI.
We tested the performance impact on processing RESTful
requests with ODL Neutron plugin which provides 30 kinds
of RESTful APIs (e.g., networking and QoS) with 185 kinds
of requests (GET, POST, PUT, DELETE). These RESTful
requests were generated and sent to ODL Neutron by the event
replay engine. FALCON generated 20 in-rules to trace Neutron
plugin (containing 4 modules). We built multiple concurrent
connections (ranging from 1 to 28) between the engine and
ODL to send requests (each connection sent 1850 requests),
and counted the number of responses that can be received per
second. Fig. 7(b) depicts the experimental results. Different
from OF messages, F-ODL always had a better throughput

than ODL (36.3% on average) in processing RESTful requests
regardless of the number of connections. The main reasons
for different results between processing OF messages and
RESTful requests come from two aspects: 1) RESTful requests
have far lower arrival rate than OF messages and therefore
ODL has lower CPU workload; 2) FALCON needs fewer in-
rules to cover invocations in Neutron plugin than OF related
plugins, which introduces less computing overhead.

C. Discussion

The evaluation suggests that FALCON is capable of localiz-
ing faults in SDN CP with low performance impact. Here we
further discuss its several limitations and characteristics:
Intrusive Profiling: FALCON is intrusive that may lead to
performance and security issues. For example, incorrect in-
rules may introduce new bugs to controllers. Thus, in-rules’
correctness verification shall be addressed in our future work.
Model Completeness: FALCON relies on in-rules to trace
system behaviors. However, closed-source third-party mid-
dlewares or incomplete in-rules may lead to disrupting of
modeling. This can be partially alleviated by applying multi-
modal similarity check on middlewares’ input and output [27].
Reference Sufficiency: The sufficiency of reference models
is the key factor affecting FALCON’s diagnosis effect. Since
FALCON is deployed on controllers running in production
environment, it can usually get enough normal models to
enrich its reference library unless the correct model does not
exist at all, which is not a common situation.
Method Generality: In this paper, FALCON is only eval-
uated in Java-based controllers. Nevertheless, it is easy to
be deployed on other language-based controllers by adopting
different underlying instrumentation tools (e.g., equip [28]))
and modify the in-rule translation.

IX. CONCLUSION

SDN is an important technique for future networks. In this
paper, we have presented FALCON, a system for localizing
root causes of faults occurred in the SDN control plane. We
design a rule-based tracing mechanism to exploit the internal
system behaviors, model them with a context-aware model and
realize a differential fault localization mechanism on system
behavior models to localize the root causes of faults. We have
also built a prototype of FALCON for ODL controllers, and our
evaluation shows that it is practical for real controller runs.
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