
Computer Architecture 
Experiment

Lab2

College of Computer Science & Engineering
Zhejiang University



SF CA_2013Spring_Lab 1.2

Topics
0、Lab instroduction
Lab 1). Warmup Run you multiple-cycle CPU on 3E board. Try to 
add one new branch instruction.

Lab 2). 5-stage pipelined CPU with 15 MIPS instructions (only 
required to execute in pipeline).

Lab 3). Implementing "stall" when have hazards
Lab 4). Implementing “forwarding paths”
Lab 5). The whole CPU with 31 instructions. 



SF CA_2013Spring_Lab 1.3

Outline

Experiment Purpose
Experiment Task
Basic Principle
Operating Procedures
Precaution



SF CA_2013Spring_Lab 1.4

Experiment Purpose 1
Understand the principles of MC CPU Controller and 
datapath and master methods of MC CPU Controller and 
datapath design.
Understand the principles of Datapath and master 
methods of Datapath design
Understand the principles of MC CPU and master 
methods of MC CPU design
master methods of program verification of CPU



SF CA_2013Spring_Lab 1.5

Experiment Purpose 2
Understand the principles of Pipelined  CPU
Understand the basic units of Pipelined CPU
Understand the working flow of 5-stages
Master the method of simple Pipelined CPU
master methods of program verification of simple 
Pipelined CPU



SF CA_2013Spring_Lab 1.6

Experiment Task 1

Design the CPU Controller, Datapath,
bring together the basic units into Multiple-
cycle CPU 
Verify the MC CPU with program and 
observe the execution of program



SF CA_2013Spring_Lab 1.7

Experiment Task 2
Design the CPU Controller, and  the 
Datapath of 5-stages Pipelined CPU
– 5 Stages
– Register File
– Memory (Instruction and Data)
– other basic units 

Verify the Pipelined CPU with program and 
observe the execution of program



SF CA_2013Spring_Lab 1.8

15 common used MIPS instructions



SF CA_2013Spring_Lab 1.9

Step1: CPU Controller



SF CA_2013Spring_Lab

Output of CPU Controller
Output Signal Meaning When 1 Meaning When 0

1 PCSrc[1:0] 00: PC + 4;01: Branch Instr.;10: jump Instr

2 WritePC Write PC Not Write PC

3 IorD Instruction Addr Data Addr.

4 WriteMem Write Mem. Not Write Mem.

5 Write DR Write Data. Reg Not Write Data. Reg

6 Write IR Write Instr. Reg Not Write Instr. Reg

7 MemToReg From Mem. To Reg From ALUOut To Reg

8 RegDest rd rt

9 ALUC ALU Controller Op

10 ALUSrcA Register rs PC

11 ALUSrcB Selection:00:Reg rt; 01:4; 10:Imm.; 11: branch Address

12 WriteA Write A Reg. Not Write A Reg.

13 WriteB Write B Reg. Not Write B Reg.

14 WriteC Write C Reg. Not Write C Reg.

15 WriteReg Write Reg. Not Write Reg.



SF CA_2013Spring_Lab 1.11

The principle of CPU Controller(1)



SF CA_2013Spring_Lab 1.12

The principle of CPU 
Controller(2)



SF CA_2013Spring_Lab 1.13

The Datapath of Multiple-cycle CPU



SF CA_2013Spring_Lab 1.14

Basic Units of Multiple-cycle CPU

CPU Controller
ALU and ALU Controller
Register file
Mem. (Instruction and Data together).
others：Register, sign-extend Unit, shifter, 
multiplexor



SF CA_2013Spring_Lab 1.15

Memory

Memory
– Dual Port Block Memory
– Port A: Read Only, Width: 32, Depth: 512
– Port B: Read and Write, Read After Write
– Rising Edge Triggered



SF CA_2013Spring_Lab 1.16

Multiple-cycle CPU Top Module
memory 
x_memory(.addra(raddr),.addrb(waddr),.clka(clk), .clkb(clk),.dinb(b_data),
.douta(mem_data),.web(write_mem));

ctrl x_ctrl(clk, rst, ir_data, zero,write_pc, iord, write_mem, write_dr, 
write_ir, memtoreg, regdst, pcsource, write_c, alu_ctrl, alu_srcA, 
alu_srcB, write_a, write_b, write_reg, state_out, insn_type, insn_code, 
insn_stage); 

pcm x_pcm(clk, rst, alu_out, c_data, ir_data, pcsource, write_pc,pc);

alu_wrapper x_alu_wrapper(a_data, b_data, ir_data, pc, alu_srcA,
alu_srcB, alu_ctrl, zero, alu_out);

reg_wrapper x_reg_wrapper(clk, rst, ir_data, dr_data, c_data, memtoreg, 
regdst, write_reg, rdata_A, rdata_B, r6out); 



SF CA_2013Spring_Lab 1.17

Observation Info
Input
– West Button: Step execute
– South Button: Reset
– Slide Button: Address of Register

Output
– 0-7 Character of First line: Instruction Code
– 8 of First line : Space
– 9-10 of First line : Read Address
– 11 of First line : Space
– 12-13 of First line : Write Address
– 0/2/4/6 of Second line : state/type/code/stage
– 8-9 of Second line : PC
– 11-14 of Second line: Selected Register Content



SF CA_2013Spring_Lab 1.18

Program for verification
<0>  lw r1, $20(r0); 0x8c01_0014 State:0,1,3,5,9 Type:3 Code:1  (LD) 
<1>  lw r2, $21(r0); 0x8c02_0015 State:0,1,3,5,9 Type:3 Code:1  (LD)
<2>  add r3, r1, r2; 0x0022_1820 State:0,1,2,8 Type:1 Code:3  (AD)
<3>  sub r4, r1, r2; 0x0022_2022 State:0,1,2,8 Type:1 Code:4  (SU)
<4>  and r5, r3, r4; 0x0064_2824 State:0,1,2,8 Type:1 Code:5  (AN)
<5>  nor r6, r4, r5; 0x0085_3027 State:0,1,2,8 Type:1 Code: 6  (NO)
<6>  sw r6, $22(r0); 0x ac06_0016 State:0,1,4,7 Type:3 Code: 2  (ST)
<7>  J 0; 0x0800_0000 State:0,1 Type:2 Code:7  (JP)

DataMem(20) = 0xbeef_0000 ; 
DataMem(21) =0x0000_beef ;



SF CA_2013Spring_Lab 1.19

Precaution

1. Add Anti-Jitter
2. Finish the State Machine
3. Add Stage Status



SF CA_2013Spring_Lab 1.20

Step2 Comparison of three CPUs’ work



SF CA_2013Spring_Lab 1.21

Datapath of 5-stages Pipelined CPU

Reg.
File

Sign-
extend

ed

Instr.
Mem.

Data
Mem.

PC

0

1

0

1

1

0

1

0

《2

 add
4

rs

rt

rd

rt

imm

add

zero

result

A

B

ALU

Branch
Taken

IF/ID ID/EX EX/MEM MEM/WB

16 32



SF CA_2013Spring_Lab 1.22

The principle of Multiple-cycle CPU



SF CA_2013Spring_Lab 1.23

Structural hazards －resource 
conflicts

Structural hazards arise from resource 
conflicts when the hardware cannot 
support all possible combinations of 
instructions in simultaneous overlapped 
execution.
– Memory conflicts
– Register File conflicts
– Other units conflicts



SF CA_2013Spring_Lab 1.24

How to resolve Structural hazards



SF CA_2013Spring_Lab 1.25

Register File

Register File
– Positive edge for transfer data for stages
– Negative edge for write operation
– Low level for read operation



SF CA_2013Spring_Lab 1.26

Memory

Instruction Memory
– Single Port Block Memory
– Read only, Width:32
– Falling Edge Triggered

Data Memory
– Single Port Block Memory
– Read and write, Width:32
– Falling Edge Triggered



SF CA_2013Spring_Lab 1.27

The principle of Pipelined 
CPU－with  CPU controller



SF CA_2013Spring_Lab

Output of CPU Controller

Output Signal Meaning When 1 Meaning When 0
1 Cu_branch Branch Instr. Non-Branch Instr.

2 Cu_shift sa Register data1
3 Cu_wmem Write Mem. Not Write Mem.
4 Cu_Mem2Reg From Mem. To Reg From ALUOut To Reg
5 Cu_sext Sign-extend the imm. No sign extended the imm.
6 Cu_aluc ALU Operation
7 Cu_aluimm Imm. Register data2

8 Cu_wreg Write Reg. Not Write Reg.

9 Cu_regrt rt rd



SF CA_2013Spring_Lab 1.29

Units of Pipelined-cycle CPU

IF Stage (Instr. Mem.)
ID Stage (CPU Ctl. And R.F.)
EX Stage (ALU)
Mem Stage (Data Mem.)
WB Stage



SF CA_2013Spring_Lab 1.30



SF CA_2013Spring_Lab 1.31

Pipelined CPU Top Module
module top (input wire CCLK, BTN3, BTN2, input wire [3:0]SW, output
wire LED, LCDE, LCDRS, LCDRW, output wire [3:0]LCDDAT);

assign pc [31:0] = if_npc[31:0];

if_stage x_if_stage(BTN3, rst, pc, mem_pc, mem_branch, …
IF_ins_type, IF_ins_number,ID_ins_type,ID_ins_number);

id_stage x_id_stage(BTN3, rst, if_inst, if_pc4, wb_destR,…
ID_ins_type, ID_ins_number, EX_ins_type, EX_ins_number..);

ex_stage x_ex_stage(BTN3, id_imm, id_inA, id_inB, id_wreg, ..
EX_ins_type, EX_ins_number, MEM_ins_type, MEM_ins_number);

mem_stage x_mem_stage(BTN3, ex_destR, ex_inB, ex_aluR, …
MEM_ins_type, MEM_ins_number, WB_ins_type, WB_ins_number);

wb_stage x_wb_stage(BTN3, mem_destR, mem_aluR, …
WB_ins_type, WB_ins_number,OUT_ins_type, OUT_ins_number);



SF CA_2013Spring_Lab 1.32

Observation Info
Input
– West Button: Step execute
– South Button: Reset
– 4 Slide Button: Register Index

Output
– 0-7 Character of First line: Instruction Code
– 8 of First line : Space
– 9-10 of First line : Clock Count
– 11 of First line : Space
– 12-15 of First line : Register Content
– Second line : “stage name”/number/type
– stage name: 1-”f”, 2-”d”, 3-”e”, 4-”m”, 5-”w”



SF CA_2013Spring_Lab 1.33

Program for verification
Instruction Bin Code Address Inst. Type

1 lw r1, $20(r0) 0x8c01_0014 0 6
2 lw r6, $21(r0) 0x8c06_0015 1 6
3 add r3,r0,r0 0x0000_1820 2 1
4 add r4,r0,r0 0x0000_2020 3 1
5 add r5,r0,r0 0x0000_2820 4 1
6 add r2,r2,r1 0x0041_1020 5 1
7 sub r3, r3, r1 0x0061_1822 6 2
8 and r4, r4, r1 0x0081_2024 7 3
9 nor r5, r5, r1 0x00a1_2827 8 5

10 beq r2, r1, -8 0x1041_fff8 9 8



SF CA_2013Spring_Lab 1.34

Precaution

1. Add Anti-Jitter and display for “A-F”.
2. Finish the blank.
3. Debug method: Output whatever signal to 
LCD Display.
4. Understand the principle of pipelined CPU and 
check the logic of circuit carefully, understand 
the sample code, then write code and synthesize 
the project, because it takes you a few 
minutes…



SF CA_2013Spring_Lab 1.35

Something Important ! ! !

1、The number and type tells the information of the instruction that 
is to be executed in the stage.
2、How to verify the result? Pls. check the result of WB stage for R-
type and LW instructions, while check the result of EXEC stage for 
BEQ instruction.
3、Why there are some NONE instructions following BEQ? How 
many NONE instructions? 3, because the condition of BEQ is 
generated in MEM stage.
4、Why the initial value of PC is FFFFFFFF, not 0?
5、Why we should pull the slide button after step execution to 
refresh the result? And instruction refresh is delayed by 1 clock-cycle? 
How to refresh automatically?



SF CA_2013Spring_Lab 1.36

Thanks!


	Computer Architecture Experiment��Lab2
	Topics
	Outline
	Experiment Purpose 1
	Experiment Purpose 2
	Experiment Task 1
	Experiment Task 2
	15 common used MIPS instructions
	Step1: CPU Controller
	           Output of CPU Controller
	The principle of CPU Controller(1)
	The principle of CPU Controller(2)
	The Datapath of Multiple-cycle CPU
	Basic Units of Multiple-cycle CPU
	Memory
	Multiple-cycle CPU Top Module
	Observation Info
	Program for verification
	Precaution
	Step2 Comparison of three CPUs’ work
	Datapath of 5-stages Pipelined CPU
	The principle of Multiple-cycle CPU
	Structural hazards －resource conflicts
	How to resolve Structural hazards
	Register File
	Memory
	The principle of Pipelined CPU－with  CPU controller
	  Output of CPU Controller
	Units of Pipelined-cycle CPU
	Pipelined CPU Top Module
	Observation Info
	Program for verification
	Precaution
	Something Important ! ! !

