Computer Architecture Lab

Xiaohong Jiang

College of Comuter Science

Prerequisite

Lab for Fundamentals of Logic and Computer Design

- Lab for Organization
- Lab environment:
 - □FPGA board: Xilinx Spartan-3E
 - □Software: Xilinx ISE 10.1i
 - □HDL: Verilog

Lab Objective

- Learn the operation of Spartan3E Board and the usage of ISE.
- Understand the principle of the pipelined CPU and MIPS instructions.
- Design the pipelined CPU that can execute 31 MIPS instructions correctly on Spartan3E board step by step according to the project tutorial.

Data path and control unit

Schedule

- Lab 1). Warmup Run you multiple-cycle CPU on 3E board. Try to add one new branch instruction.
- Lab 2). 5-stage pipelined CPU with 15 MIPS instructions (only required to execute in pipeline).
- Lab 3). Implementing "stall" when have hazards so that CPU can execute program correctly.
- Lab 4). Implementing "forwarding paths" to make CPU run faster.
- Lab 5). The whole CPU with 31 instructions. Adding the other 16 instructions and implementing total 31 MIPS instructions in your pipelined CPU, which solves control hazard with predict-nottaken policy.

15 common used MIPS instructions

MIPS Instructions										
Bit#	[3126]	[2521]	[2016]	[1511]	[1006]	[0500]	Operations			
R-type	ор	rs	rt	rd	sa	func				
add	000000	rs	rt	rd	00000	100000	rd < rs + rt;	PC < PC + 4		
sub	000000	rs	rt	rd	00000	100010	rd < rs - rt;	PC < PC + 4		
and	000000	rs	rt	rd	00000	100100	rd <−− rs « rt;	PC < PC + 4		
or	000000	rs	rt	rd	00000	100101	rd < rs i rt;	PC < PC + 4		
sll	000000	00000	rt	rd	sa	000000	rd < rt << sa;	PC < PC + 4		
srl	000000	00000	rt	rd	sa	000010	rd < rt >> sa (logical);	PC < PC + 4		
sra	000000	00000	rt	rd	sa	000011	rd < rt >> sa (arithmetic);	PC < PC + 4		
l-type	ор	rs	rt	ir	nmediat	te				
addi	001000	rs	rt	immediate			rt < rs + (sign_extend)immediate;	PC < PC + 4		
andi	001100	rs	rt	immediate			rt < rs ɕ (zero_extend)immediate;	PC < PC + 4		
ori	001101	rs	rt	immediate			rt < rs (zero_extend)immediate;	PC < PC + 4		
lw	100011	rs	rt	immediate			rt < memory[rs + (sign_extend)immediate];	PC < PC + 4		
SW	101011	rs	rt	immediate			memory[rs + (sign_extend)immediate] < rt;	PC < PC + 4		
beq	000100	rs	rt	immediate			if (rs == rt) PC < PC + 4 + (sign_extend)immediate<<2; else	PC < PC + 4		
bne	000101	rs	rt	immediate		te	if (rs != rt) PC < PC + 4 + (sign_extend)immediate<<2; else	PC < PC + 4		
J-type	ор	address								
j	000010	address					PC < (PC+4)[3128],address<<2			

Pipelined CPU supporting execution of 31 MIPS instructions

MIPS Instructions									
Bit #	3126	2521	2016	1511	106	50	Operations		
R-type	op	rs	rt	rd	sa	func			
add		rs	rt	rd	00000	100000	rd = rs + rt; with overflow	PC+=4	
addu		rs	rt	rd	00000	100001	rd = rs + rt; without overflow	PC+=4	
sub	000000	rs	rt	rd	00000	100010	rd = rs - rt; with overflow	PC+=4	
subu		rs	rt	rd	00000	100011	rd = rs - rt; without overflow	PC+=4	
and		rs	rt	rd	00000	100100	rd = rs & rt;	PC+=4	
or		rs	rt	rd	00000	100101	rd = rs rt;	PC+=4	
xor		rs	rt	rd	00000	100110	$rd = rs \wedge rt;$	PC+=4	
nor		rs	rt	rd	00000	100111	$rd = \sim (rs \mid rt);$	PC+=4	
slt		rs	rt	rd	00000	101010	if(rs < rt)rd = 1; else rd = 0; <(signed)	PC+=4	
sltu		rs	rt	rd	00000	101011	if(rs < rt)rd = 1; else rd = 0; <(unsigned)	PC+=4	
sll		00000	rt	rd	sa	000000	$rd = rt \ll sa;$	PC+=4	
srl		00000	rt	rd	sa	000010	rd = rt >> sa (logical);	PC+=4	
sra		00000	rt	rd	sa	000011	rd = rt >> sa (arithmetic);	PC+=4	
sllv		rs	rt	rd	00000	000100	$rd = rt \ll rs;$	PC+=4	
srlv		rs	rt	rd	00000	000110	rd = rt >> rs (logical);	PC+=4	
srav		rs	rt	rd	00000	000111	rd = rt >> rs(arithmetic);	PC+=4	
jr	فدوم	rs	00000	00000	00000	001000		PC=rs	
A 177		• • •							

ZheJiang University CA_2013Spring_Lab

Pipelined CPU supporting execution of 31 MIPS instructions

MIPS Instructions											
Bit #	3126	2521	2016	1511 106 50			Operations				
I-type	op	rs	rt	immediate							
addi	001000	rs	rt		imm		$rt = rs + (sign_extend)imm;$ with overflow	PC+=4			
addiu	001001	rs	rt	imm			rt = rs + (sign_extend)imm; without overflow	PC+=4			
andi	001100	rs	rt	imm			rt = rs & (zero_extend)imm;	PC+=4			
ori	001101	rs	rt	imm			rt = rs (zero_extend)imm;	PC+=4			
xori	001110	rs	rt	imm			rt = rs ^ (zero_extend)imm;	PC+=4			
lui	001111	00000	rt	imm			rt = imm << 16;	PC+=4			
lw	100011	rs	rt	imm			rt = memory[rs + (sign_extend)imm];	PC+=4			
sw	101011	rs	rt	imm			<pre>memory[rs + (sign_extend)imm] < rt;</pre>	PC+=4			
beq	000100	rs	rt	imm			if (rs == rt) PC+=4 + (sign_extend)imm <<2;	PC+=4			
bne	000101	rs	rt	imm			if (rs != rt) PC+=4 + (sign_extend)imm <<2;	PC+=4			
slti	001010	rs	rt	imm			<pre>if (rs < (sign_extend)imm) rt =1 else rt = 0; less than signed</pre>	PC+=4			
sltiu	001011	rs	rt	imm			if (rs < (zero_extend)imm) rt =1 else rt = 0; less than unsigned	PC+=4			
J-type	op	address									
j	000010			address			PC = (PC+4)[3128], address << 2				
jal	000011			address			PC = (PC+4)[3128],address<<2 ; \$31 = PC+4				

CA_2013Spring_Lab

Grading 32% in all

- Participation
- Lab1-5: 4%, 6%, 5%, 5%, 8%

4%

- 5 Lab reports
 - Lab result 60%, report 40%
- Alternative Lab5 (have decided yet)
 Implement a pipelined LC3

How to do Lab ?

You are highly encouraged to do the lab assignment in group of 2 students, but you need to write and submit your lab report all by yourself.

Lab report template will be uploaded to the course website.

Lab report submission:

 Submit your lab report to the course website into the lab directory naming in StID_name_lab1.doc, ..., StID_name_lab4.doc, and <u>StID_name_lab5.rar</u> including StID_name_lab5.doc <u>and your lab work</u> <u>directory</u>.

Submission deadline will be announced on course website.

