

CMPT 300: Operating Systems I

Assignment 1
Sample Solution

POLICIES:

1. Coverage
Chapters 1-6

2. Grade
10 points, 100% counted into the final grade

3. Individual or Group
Individual based, but group discussion is allowed and encouraged

4. Academic Honesty
Violation of academic honesty may result in a penalty more severe than zero
credit for an assignment, a test, and/or an exam.

5. Submission
Electronic copy via CourSys

6. Late Submission
2-point deduction for late submission within one week;
5-point deduction for late submission over one week;
Deduction ceases upon zero.

QUESTIONS:

1. 1 point
What is an operating system?
What is the difference among an operating system, kernel, system programs, and
application programs?
[Grading Rubric: Both questions should be correctly answered to get 1 point.
Otherwise, get 0.]

An operating system is a program that manages a computer's hardware. It also
provides a basis for application programs and acts as an intermediary between the
computer user and the computer hardware.

An operating system includes kernel and system programs.
Kernel is the part of the operating system that is running at all times on the

computer.
System programs correspond to the other part of the operating system that is not
necessarily part of the kernel.
Application programs include all programs not associated with the operation of
the system.
That is, the operating system and application programs constitute the computer
software.

2. 2 points
Using the program shown below, explain what the output will be at the lines X
and Y.
 #include <sys/types.h>
 #include <stdio.h>
 #include <unistd.h>
 #define SIZE 5

 int nums[SIZE] = {0,1,2,3,4};

 int main()
 {
 int i
 pid_t pid;

 pid = fork();

 if(pid == 0)
 {
 for(i=0; i<SIZE; i++)
 {
 nums[i] *= -i;
 printf("CHILD: %d", nums[i]); /* LINE X */
 }
 }
 else if(pid > 0)
 {
 wait(NULL);
 for(i=0; i<SIZE; i++)
 printf("PARENT: %d", nums[i]); /* LINE Y*/
 }

 return 0;
 }
[Grading Rubric: Correct output of X gets 1 point; correct output of Y gets 1
point.]

Line X: 0, -1, -4, -9, -16

Line Y: 0, 1, 2, 3, 4

[Hints: no required for grading.
Any changes the child makes will occur in its copy of the data and will not be
reflected in the parent.]

3. 2 points: Amdahl's Law
A common transformation required in graphics engines is square root.
Implementations of floating-point (FP) square root vary significantly in
performance, especially among processor designed for graphics. Suppose FP
square root (FPSQR) is responsible for 20% of the execution time of a critical
graphics benchmark. One proposal is to enhance the FPSQR hardware and speed
up this operation by a factor of 10. The other alternative is just to try to make all
FP instructions in the graphics processor run faster by a factor of 1.6; FP
instructions are responsible for a total of 50% of the execution time for the
application. The design team believes that they can make all FP instructions run
1.6 times faster with the same effort as required for the fast square root. Calculate
these two design alternatives and decide which one is better.
[Grading Rubric: Correct calculation of one speed up gets 1 point; correct
calculation of both directly specifies the better one.]

SpeedupFPSQR = 1/((1-0.2)+0.2/10) = 1/0.82 = 1.22

SpeedupFP = 1/((1-0.5)+0.5/1.6) = 1/0.8125 = 1.23

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

4. 1 point
Including the initial parent process, how many processes are created by the
program shown in the following code segment and why?
 #include <stdio.h>
 #include <unistd.h>

 int main()
 {
 /* fork a child process */
 fork();

 /* fork another child process */
 fork();

 /* fork another child process */
 fork();

 /* and fork another */
 fork();
 }
[Grading Rubric: Only providing the number of created processes gets zero
point. Reasoning about the number is required.]

16.

The purpose of fork() is to create a new process, which becomes the child process
of the caller.
After a new child process is created, both processes will execute the next
instruction following the fork() system call.

In the program shown above, originally there is one parent process and four fork()
system calls are executed.

After the first fork() call, one new child process is created. Including the parent
process, now there are two processes.

Both of the two processes then run the second fork() call, each creating a new
child process and making the number of processes four.

All these four processes then run the third fork() call, each creating a new child
process and making the number of processes eight.

Finally, all these eight processes run the fourth fork() call, each creating a new
child process and making the number of processes 16.

5. 2 points
Consider the following set of processes, with the length of the CPU burst given in
milliseconds:

Process Burst Time Priority
P1 2 2
P2 1 1
P3 8 4
P4 4 2
P5 5 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at
time 0.

Draw four Gantt charts (i.e., the execution sequence chart) that illustrate the
execution of these processes using the following scheduling algorithms:
FCFS, SJF, nonpreemptive priority (a larger priority number implies a higher
priority), and RR (quantum =2).
For each scheduling algorithm, calculate the waiting time of each process.
[Grading Rubric: For each scheduling algorithm, correct only if both the
Gantt chart and the waiting times are correct. Correct answers for all four
scheduling algorithms get 2 points. Correct answers for two or three
scheduling algorithms get 1 point. Correct answers for less than two
scheduling algorithms get 0 point.]

FCFS
P1 P2 P3 P4 P5
0 2 3 11 15 20
Waiting time of each process:
P1: 0
P2: 2
P3: 3
P4: 11
P5: 15

SJF:
P2 P1 P4 P5 P3
0 1 3 7 12 20
Waiting time of each process:
P1: 1
P2: 0
P3: 12
P4: 3
P5: 7

Nonpreemptive priority
P3 P5 P1 P4 P2
0 8 13 15 19 20
Waiting time of each process:
P1: 13
P2: 19
P3: 0
P4: 15
P5: 8

RR
P1 P2 P3 P4 P5 P3 P4 P5 P3 P5 P3
0 2 3 5 7 9 11 13 15 17 18 20
Waiting time of each process:
P1: 0
P2: 2
P3: 12
P4: 9
P5: 13

6. 2 points
What are the three requirements for a solution to the critical-section problem?
Consider the following solution to the dining-philosophers' problem.

This solution has the following characteristics:

a) The five philosophers are numbered 0 to 4;
b) Each philosopher is represented by a thread that executes the function

philosopher(i), where i is the number of that philosopher.
c) A philosopher can be in one of three predefined states: HUNGRY

(waiting for a fork), EATING (has 2 forks and is eating), or THINKING.
d) The solution uses a shared array state and a semaphore mutex to ensure

mutual exclusion in accessing this array.
e) The solution also uses an array of semaphores s.

f) There are predefined functions for thinking and eating that can take any
amount of time to complete.

Describe a concrete scenario in which starvation occurs to this solution.
[Grading Rubric: Correct description of the three requirements gets 1 point.
Correct description of a starvation scenario gets 1 point.]

Three requirements: mutual exclusion, progress, and bounded waiting.

Mutual exclusion. If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections.

Progress. If no process is executing in its critical section and some processes wish
to enter their critical sections, then only those processes that are not executing in
their remainder sections can participate in deciding which will enter its critical
section next, and this selection cannot be postponed indefinitely.

Bounded waiting. There exists a bound, or limit, on the number of times that
other processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is granted.

Possible starvation scenario, may not necessarily be the only one:
a. Philosopher 1 starts eating.
b. Philosopher 3 starts eating.
c. Philosopher 2 wants to eat, calls take_forks(2), and gets blocked.
d. Philosopher 1 finishes eating but cannot call V(s[2]) to unblock philosopher 2
 because philosopher 3 is still eating.
e. Philosopher 1 starts eating again.
f. Philosopher 3 finishes eating but cannot call V(s[2]) to unblock philosopher 2
 because philosopher 1 is still eating.
g. Philosopher 3 starts eating again.
h. Goto step d.

This way, Philosopher 2 never gets a chance to eat.

