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Abstract—Cloning attacks seriously impede the security of
Radio-Frequency Identification (RFID) applications. In this pa-
per, we tackle deterministic clone detection for anonymous RFID
systems without tag identifiers (IDs) as a priori. Existing clone
detection protocols either cannot apply to anonymous RFID
systems due to necessitating the knowledge of tag IDs or achieve
only probabilistic detection with a few clones tolerated. We
propose two protocols, BASE and DeClone, toward fast and
deterministic clone detection for large anonymous RFID systems.
BASE leverages the observation that clone tags make tag cardinal-
ity exceed ID cardinality. DeClone is built on a recent finding that
clone tags cause collisions that are hardly reconciled through re-
arbitration. For DeClone to achieve detection certainty, we design
breadth first tree traversal toward quickly verifying unreconciled
collisions and hence the cloning attack. We validate their detection
performance through analysis and simulation. The results show
that BASE delivers faster detection for small systems while
DeClone for large ones especially when clone ratio increases.
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I. INTRODUCTION

Tag cloning attacks stand in the way of secure Radio-
Frequency Identification (RFID) applications. Launching a
cloning attack, an attacker compromises genuine tags and
produces their replicas, namely clone tags [1], [2]. Since clone
tags copy compromised genuine tags’ data such as identifiers
(IDs) and keys, they can impersonate genuine tags. Clone tags
thus threaten RFID applications that use the genuineness of
tags to validate the authenticity of tagged objects [3]–[5]. For
example, attached with clone tags, products in RFID-enabled
supply chains cause financial losses [6], while healthcare
facilities in RFID-aided hospitals jeopardize personal safety
[7]. However, cloning attacks are hard to prevent because most
tags are resource constrained and cannot afford complex cryp-
tographic solutions [3]. Leveraging the inherent variability in
manufactured circuits, physically unclonable functions (PUFs)
once ignited the hope of defeating cloning attacks for low-
cost tags [3], [8]. Unfortunately, recent findings unveil PUFs’
security vulnerabilities [9] and extinguish the hope of they
preventing cloning attacks. We therefore need to detect whether
clone tags hide in an RFID system.

Most existing clone detection protocols necessitate the
knowledge of tag IDs. Such protocols are built on the ethos of
knowing IDs before detecting which IDs associate with clone
tags. Protocols in [6], [10]–[12] focus solely on RFID-enabled
supply chains; they collect IDs from supply chain partners and

detect the cloning attack when an ID simultaneously shows
up at different places. Protocols in [4], [13], [14] write a new
random number on a tag’s memory each time the tag is scanned
and maintain a map of tag IDs and corresponding random
numbers. These protocols collect both tag IDs and random
numbers from tags. A cloning attack is detected whenever any
pair of the ID and random number is not identical with that in
the map. A recent protocol in [15] further enhances the random
number based approach to detect clone tags at a batch level.
Besides, protocols in [16], [17] observe that responses from
clone tags will turn supposed intact responses into collisions.
Given tag IDs, they first determine when a tag to respond.
During response collection, if the protocol expects only one
response but receives a collision, it is likely that the current
ID associates with more than one tag (i.e., one genuine plus
at least one clone). In summary, all the preceding protocols
share a belief that tag IDs are a must for clone detection.

Recent advances in clone detection start paying attention
to anonymous RFID systems. In such systems, the knowl-
edge of tag IDs should be isolated from protocol designs to
enable privacy-sensitive applications [18]–[20]. Such a strict
requirement renders ID-dependent protocols in [4], [6], [10]–
[17] inapplicable to anonymous RFID systems. GREAT [20],
to our best knowledge, is the only anonymous clone detection
protocol. It shares the motivation with protocols in [16], [17]—
clone tags induce unexpected collisions of tag responses.
GREAT proposes reconciling collisions by greedily arbitrating
tags that cause collisions. Since clone tags have the same
IDs with that of their corresponding genuine tags, a collision
caused by a genuine tag and its clone(s) cannot be reconciled.
On the other hand, if a collision is due to multiple genuine
tags, it might be reconciled after some rounds of arbitration.
GREAT, however, adopts probabilistic arbitration protocol and
therefore fits better in RFID applications with a few clones
tolerable [20]. For applications requiring intact anonymity and
authenticity, we still desire solutions that favor anonymous
RFID systems yet provide deterministic clone detection.

In this paper, we take on the challenge of deterministic
clone detection for anonymous RFID systems and contribute
two protocols, BASE and DeClone. Both BASE and DeClone
can accurately detect cloning attacks without tag IDs as a
priori. First, BASE leverages cardinality contradiction caused
by clone tags. The cardinality contradiction occurs between tag
cardinality and ID cardinality because a cloning attack makes
tag cardinality exceed ID cardinality. BASE, however, needs



to count almost all tags until it detects the cloning attack,
although clone tags might respond at the very beginning of
protocol execution. Second, inspired by the insight that clone
tags induce unreconciled collisions [20], DeClone starts re-
arbitrating collisions from the beginning of protocol execution
and detects the cloning attack if an unreconciled collision is
found. To verify unreconciled collisions, we propose breadth
first tree traversal to quickly determine whether a collision is
caused by tags with the same ID (i.e., a cloned ID) or different
IDs. We validate BASE and DeClone’s performance in terms of
anonymity, accuracy, and scalability through analysis and sim-
ulation. The results show that BASE delivers faster detection
for small systems while DeClone for large ones. Furthermore,
the more cloned IDs a system contains, the faster DeClone
detects the cloning attack.

The rest of the paper is organized as follows. Section II
defines the problem. Section III and Section IV present BASE
and DeClone, respectively, and analyze their performance.
Section V reports performance-evaluation results. Finally, Sec-
tion VI concludes the paper.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

In this section, we first describe the system model and ad-
versary model. We then formulate the problem of deterministic
clone detection for anonymous RFID systems.

A. System Model

Anonymous RFID system. We consider an anonymous
RFID system in which readers cannot retrieve tag IDs from
the server or tags. Such a strict requirement is necessary for
protecting tag IDs’ associated privacy and enabling privacy-
sensitive applications [18]–[20]. Following a canonical RFID
system architecture, the system consists of a backend server,
a reader, and a number of objects each affixed with a tag.
For inventory control, a tag has a unique ID across the
system and represents the object that it is attached to. When
multiple readers are in use for covering all tags and are
well synchronized [21], they can be logically treated as one
[22]1. The reader communicates with the server via a wired
or wireless yet secure channel while with tags via a wireless
channel. Normally, the server does not directly communicate
with tags; it dictates what monitoring operations the reader
needs to execute over tags. Most existing monitoring opera-
tions entail the ID information of tags. For example, tag IDs
are necessary for detecting missing tags whose IDs’ correspond
to no response [22] and for detecting clone tags whose IDs
appear at different locations [6], [10]–[12]. However, we do
not assume the knowledge of tag IDs in anonymous RFID
systems. Only a tag itself knows its own ID; tags use IDs
to determine when to respond under a certain anti-collision
protocol (e.g., slotted Aloha [27] or tree traversal [28]).

Assumptions. To explore deterministic clone detection
solutions for anonymous RFID systems, we assume that 1) ID
cardinality (i.e., the number tag IDs) is known, and 2) opcodes
are in use for readers to inform tags what data to transmit.

1Another line of research efforts customizes efficient monitoring protocols
(e.g., cardinality estimation [23], information collection [24], and missing tag
detection [25]) to multi-reader (or equivalently mobile handheld-reader [26])
systems. We believe that techniques therein can be leveraged to adapt our
protocols; this is not the focus of this paper.

First, we assume the knowledge of ID cardinality rather
than ID specifics. The reader can retrieve ID cardinality from
the server. In an intact system, ID cardinality is equal to
tag cardinality as each tag has a unique ID. However, when
clone tags exist, tag cardinality exceeds ID cardinality. This
observation motivates an intuitive clone detection solution
(Section III).

Second, we assume that to fulfill various monitoring op-
erations, the reader adopts opcodes to query corresponding
data from tags. Such opcodes facilitate most established RFID
protocols, whether or not being explicitly emphasized [29].
We observe that varying tag responses is necessary for protocol
efficiency rather than protocol efficacy. Its purpose is to require
as few data as possible from tags. For example, a 10-bit string
with CRC embedded is sufficient for distinguishing an intact
response from a collided one [30] while one bit is sufficient
for transmitting binary information (e.g., tag presence [22],
battery’s residual capacity [31]). Transmitting more data than
necessary therefore brings no benefits but efficiency degra-
dation. For conciseness, we will directly indicate what data
to transmit without emphasizing the use of opcodes during
protocol design.

B. Adversary Model

Launching a cloning attack, the attacker first compromises
genuine tags and then replicates their data to clone tags
[2]. Since clone tags hold all valid data (e.g., IDs, keys) of
compromised tags, clone tags can easily impersonate genuine
tags. Detecting clone tags is thus practically important as most
RFID applications equate tag genuineness to tagged objects’
authenticity [2], [13]. However, clone tags are more challeng-
ing to detect than are counterfeit tags holding valid IDs but
forged keys. Common solutions for detecting counterfeit tags
such as cryptographic authentication [32]–[34] cannot conquer
clone tags, which pass authentication using their copies of valid
keys of compromised tags.

We assume that clone tags faithfully respond to reader
queries. In other words, clone tags cannot selectively respond
to evade detection. As with detecting counterfeit tags, a
detection protocol fails to uncover clone tags if they keep
silent to detection queries. There are two cases in which
clone tags may violate the assumption of faithful response. We
observe that in both cases the assumption could be satisfied
with or without extra efforts. First, the attacker manipulates
clone tags while eavesdropping the communication between
the reader and tags. When the eavesdropped query is likely
for clone detection, the attacker informs clone tags not to
send responses. If this is the case, we can leverage advanced
jamming techniques that can jam the attacker’s communication
without interfering the communication between the reader and
tags [35], [36]. Second, clone tags may be made sophisticated
enough such that they themselves decide to which queries
not to respond. We tackle such sophisticated clone tags by
making reader queries for clone detection indistinguishable
from that for other monitoring operations. For example, when
the clone detection protocol requires a 1-bit response from tags
(Section IV), clone tags can hardly infer whether the query
verifies its genuineness or its presence as in [22]. We suggest
that strategically interweaving different monitoring operations



could obfuscate not only sophisticated clone tags but also
sophisticated attackers; this is not the focus of this paper.

C. Problem Formulation

Consider an anonymous RFID system with ID cardinality
Nid and at least one cloned ID that associates with some clone
tag(s). The deterministic clone detection problem is to detect
the existence of clone tags with certainty, as fast as possible,
without tag IDs as a priori. Such a formulation enforces the
following three requirements for designing desirable clone
detection protocols.

Anonymity. To enable anonymous RFID systems (Sec-
tion II-A), clone detection protocols cannot be built upon the
values of tag IDs. Most existing clone detection protocols,
however, require tag IDs as a priori [4], [11]–[14], [16], [17],
[20] and thus provide few hints about detecting anonymous
clone tags. We will explore new features for detecting clone
tags while preserving tag anonymity (Section III and Sec-
tion IV).

Accuracy. Clone tags are hardly distinguished from gen-
uine tags by the reader and thus significantly threaten security-
relevant applications such as RFID access control. For these
applications, clone detection protocols should accurately as-
certain the existence of clone tags if any. The only related
work for detecting anonymous clone tags is, however, a
probabilistic design [20]. We will propose new techniques for
deterministic detection of anonymous clone tags (Section III
and Section IV).

Scalability. RFID is experiencing an ever-increasing de-
mand for more pervasive applications. For example, as Lux
Research predicts, China’s RFID card/tag market volume will
expand to 2.11 billion units in 2017 [37]. Making clone
detection protocols scalable to large-scale systems, we borrow
ideas from related work (e.g., [4], [13], [16], [17], [20], [38]).
The key idea is to collect as a few data from tags as sufficient
for clone detection. This way, transmitting fewer data yields
higher protocol efficiency and thus scalability.

III. BASELINE PROTOCOL

USING CARDINALITY CONTRADICTION

In this section, we present a baseline protocol called BASE.
Its intuition is that clone tags enlarge tag cardinality and
therefore lead to a cardinality contradiction between tag cardi-
nality and ID cardinality. We build BASE upon adapted slotted
Aloha, whereby BASE can count tags without collecting their
IDs. We also analyze BASE’s performance and limitations.

A. Motivation: Cardinality Contradiction

Clone tags cause a contradiction between tag cardinal-
ity and ID cardinality. This observation is straightforward
as a cloned ID associates with more than one tag. BASE
leverages cardinality contradictions for clone detection. Given
ID cardinality, BASE needs to obtain tag cardinality for
comparison. To count tags, BASE chooses the communication
protocol of slotted Aloha [27] over tree traversal [28] because
slotted Aloha is faster than tree traversal in large systems
[39]. Before we instantiate how BASE counts tags, we briefly
introduce the basics of slotted Aloha. In slotted Aloha, the

id3 id4 id5id5
Tags

with ID Indices
id1 id2

h(f, r, ID)

S CC S
Time Slots

S: Singleton

C: Collision

1    2   2 1
Count Tags

by Slot State

Cardinality Contradiction: Ntag    1 + 2 + 1 +2 = 6 > 5 = Nid

Fig. 1. BASE example. Clone tags make tag cardinality Ntag contradict
(i.e., exceed) ID cardinality Nid. BASE thus uses a cardinality contradiction
for detecting the existence of clone tags.

reader queries tags in a series of frames each containing a
number of time slots. At the beginning of a frame, the reader
issues two parameters, frame size f (i.e., the number of time
slots) and random seed r. Upon receiving the query, a tag
uniformly at random picks a time slot to respond—the tag
determines the index of the picked time slot using a built-in
hashing function h(·) with f , r, and its ID as operands. We
regard the state of a time slot as empty, singleton, or collision
if the time slot contains responses from none, only one, or
at least two tags, respectively. At the end of a time slot, the
reader 1) informs whether tags responded in the time slot need
to participate in the subsequent frame and 2) triggers the next
time slot. BASE can use slotted Aloha to count tags because
the number of singletons faithfully estimates tag cardinality.

BASE example. Figure 1 instantiates how BASE detects
clone tags using cardinality contradiction. The example con-
siders an ID cardinality of Nid = 5 with one corresponding
to a clone tag. For ease of presentation, we label tags with
id1 through id52 and assign id5 as the cloned ID. In the
query frame, id1 and id4 respond in singleton slots; id2 and
id3 respond in a collision slot. The two id5’s with the same
ID unavoidably respond in the same slot and cause another
collision. Based on slot states, BASE increases the counter of
tag cardinality Ntag as follows: an empty slot contributes no
tag, a singleton slot only one, while a collision slot at least
two. Two singleton slots and two collision slots as illustrated
therefore yield a tag cardinality of Ntag ≥ 1× 2 + 2× 2 = 6.
If all tags are genuine, they must correspond to Ntag ≥ 6 tag
IDs. This contradicts with the given ID cardinality of Nid = 5.
Such a cardinality contradiction enables BASE to detect the
existence of clone tags without knowing tag IDs.

B. BASE Design

BASE detects clone tags by finding cardinality contradic-
tion between ID cardinality Nid and tag cardinality Ntag.
Provided with ID cardinality, BASE counts tags using the
number of singleton slots and maintains a rough cardinality
estimation using the number of collision slots. The principle
is that a singleton corresponds to only one tag while a collision
at least two. Once tag cardinality is found to exceed ID
cardinality can BASE detect the cloning attack.

2Note that id1 through id5 are only indices rather than the values of tag
IDs. We do not assume ID specifics to guarantee the anonymity requirement.



BASE estimates tag cardinality Ntag by slightly adapting
slotted Aloha based identification. The only adaptation is that
tags do not respond with tag IDs as traditionally requested;
instead, they respond with 10-bit strings embedded with CRC,
which are sufficient for the reader to detect collisions [30].
Specifically, BASE runs some round(s) of slotted Aloha until
it finds Ntag > Nid (when clone tags exist) or Ntag = Nid

(otherwise). In each round, the reader issues a query message
comprising frame size f and random seed r. For the first round,
frame size f is initialized to Nid toward high time efficiency
[27]. On receipt of the query, a tag waits to respond in the
time slot with index h(r, ID) mod f . For tags in singleton
slots, the reader informs them to keep silent until the end
of BASE’s execution. For tags in collision slots, the reader
informs them to continue to respond in subsequent rounds.
The reader maintains two slot-state related variants, ns for the
number of singleton slots and nc for the number of collision
slots. The value of ns is initialized to zero and incremented
upon singleton. The value of nc is, however, set to zero at
the beginning of each round and incremented upon collision.
Using ns and nc, BASE then estimates Ntag as the following:

Ntag ≥ ns + 2nc (1)

At the end of each round, BASE compares tag cardinality
Ntag against ID cardinality Nid and accordingly executes one
of the following three cases.

• If Ntag > Nid (i.e., ns + 2nc > Nid) as in Figure 1,
BASE detects the cloning attack and terminates.

• If Ntag = Nid (i.e., ns = Nid) and nc = 0, BASE
verifies the genuineness of all tags and terminates.

• If Ntag ≤ Nid (i.e., ns + 2nc ≤ Nid) and nc > 0,
BASE proceeds to the next round with an updated
frame size of f = Nid − ns.

C. Performance Analysis

BASE satisfies all the three performance requirements
of anonymity, accuracy, and scalability as described in Sec-
tion II-C. We sketch the performance analysis as follows.

Anonymity. BASE preserves the anonymity of all tag IDs
except that of cloned IDs. During the execution, BASE ensures
that only tags themselves use the knowledge of tag IDs. BASE
neither transmits tag IDs in the air nor grants access to tag
IDs on the server. The anonymity of cloned IDs is, however,
breached by the cloning attacker but not by BASE. Since
cloned IDs are clear to the attacker anyway, the best a clone
detection protocol can do is to protect the anonymity of tag
IDs other than cloned IDs. We therefore conclude that BASE
satisfies the anonymity requirement.

Accuracy. BASE satisfies the accuracy requirement in that
it has neither false positive nor false negative. First, a false
positive occurs when no clone tags exist while BASE reports
a cloning attack. When no clone tags exist, tag cardinality
is equal to ID cardinality as each tag has a unique ID. In
this case, BASE ascertains the genuineness of all tags with no
false positives. Second, a false negative occurs when clone tags
exist while BASE does not detect their existence. When clone
tags exist, a compromised genuine tag and its corresponding
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Fig. 2. BASE’s efficiency limitation. Clone tags with id5 may respond at
the early stage of BASE execution (e.g., the fourth slot as illustrated) whereas
BASE detects their existence at the ending stage.

clone tags will always respond in the same slot and cause a
collision (Figure 1). Such a collision corresponds to only one
ID but contributes more than one to tag cardinality estimation
(Equation 1). This way, clone tags make tag cardinality exceed
ID cardinality. BASE thus detects the cloning attack with no
false negatives.

Scalability. BASE satisfies the scalability requirement with
a linear time complexity with respect to system scale. When
frame size f is set to the number of IDs of tags that will
respond, the frame contains approximately f/e empty slots,
f/e singleton slots, and (1−2/e)f collision slots (by Lemma 1
in [30]). As aforementioned, when the number of cloned IDs is
limited, the distribution of slot slates slightly varies. The first
frame of BASE execution thus contains Nid/e empty slots,
Nid/e singleton slots, and (1−2/e)Nid collision slots, leaving
(Nid −Nid/e) IDs to the second frame. As the second frame
size is set to Nid−Nid/e, the distribution of slot states follows
the same ratios as that in the first frame; this applies to also
subsequent frames. The total number of time slots of all frames
is about eNid [27], comprising Nid empty slots, Nid singleton
slots, and (e−2)Nid collision slots. Let Te, Ts, and Tc denote
the time duration of an empty slot, a singleton slot, and a
collision slot, respectively. BASE’s execution time, TBASE, can
be defined as the following:

TBASE ≈ TeNid + TsNid + (e − 2)TcNid

= (Te + Ts + (e − 2)Tc)Nid. (2)

BASE therefore has a linear time complexity of O(Nid) and
is scalable to large systems.

D. Limitations and Lessons Learned

BASE catches cardinality contradiction until most tags
respond in singleton slots whereas clone tags may respond
at early stage of BASE execution. As illustrated in Figure 2,
clone tags with id5 respond in the fourth slot. The cardinality
contradiction, however, shows up until the last third slot.
More generically, when BASE executes multiple frames, clone
tags respond in each frame and BASE reveals their caused
cardinality contradiction at the ending slots of the last frame.
If we could find a way to expose clone tags in each slot,
the clone detect protocol can terminate immediately after it
detects clone tags. Such a protocol promises faster detection
in, for example, the fourth slot in Figure 2 than BASE does



in the tenth slot. We next present DeClone that enforces clone
detection in each slot.

IV. DECLONE PROTOCOL

USING UNRECONCILED COLLISION

In this section, we present DeClone. It leverages the ob-
servation that clone tags cause unreconciled collisions, which
cannot be arbitrated into singletons. We use a hybrid design
of slotted Aloha and tree traversal to verify unreconciled
collisions. We also propose breadth first tree traversal toward
fast unreconciled collision verification. Our analysis shows that
DeClone satisfies the requirements of accuracy and scalability
whereas it leaks the IDs of compromised tags.

A. Motivation: Unreconciled Collision

Observations from BASE. We further distill the lessons
from BASE into the following two observations that drive
DeClone design.

First, clone tags cause unreconciled collisions that cannot
be arbitrated into singletons. However, since slotted Aloha is
a probabilistic arbitration protocol, it cannot deterministically
detect an unreconciled collision. Specifically, slotted Aloha
cannot determine whether a hard-to-arbitrate collision is due
to clone tags or genuine tags with different IDs, although a
collision against more rounds of arbitration yields a higher
probability of being unreconciled due to clone tags [20].

Second, because of the probabilistic essence of slotted
Aloha, a clone tag is likely to respond in each time slot with
equal probability. Finding unreconciled collisions from the
very beginning of a frame, therefore, promises faster detection
of clone tags than does BASE, which exposes the existence of
clone tags until almost all tags respond in singleton slots.

Motivations for DeClone. Motivated by the preceding two
observations, we design DeClone by leveraging unreconciled
collisions. We adopt the following two techniques to guarantee
certainty and efficiency of clone detection.

First, we deterministically detect unreconciled collisions
through a hybrid design of slotted Aloha and tree traversal.
Different from slotted Aloha, tree traversal performs deter-
ministic arbitration. In tree traversal [28], to collect l-bit
tag IDs, the reader first creates a binary tree of height l
and with each l-bit string mapped to a leaf. The reader then
collects tag IDs through traversing the binary tree in a depth
first order. Specifically, the reader broadcasts the bit string
corresponding to the current tree node; tags respond if their
IDs are prefixed with the bit string. If no collision occurs, the
reader can correctly receive the response. Otherwise, the reader
continues to collect tag IDs by broadcasting the bit string of
the current tree node’s child. This way, at the lth level of
the binary tree, the bit string a tree node corresponds to an
l-bit tag ID. If the query using an l-bit tag ID still incurs a
collision of tag responses, it must be an unreconciled collision
caused by the genuine tag and clone tag(s) with the queried
ID. DeClone first arbitrates a collision using slotted Aloha
toward quickly finding a possible unreconciled collision; then it
further arbitrates the collision using tree traversal to assert the
unreconciled collision. We will adapt tree traversal to breadth
first traversal toward fast detection of unreconciled collisions.
(Figure 3 and Section IV-B).
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Fig. 3. DeClone achieves deterministic clone detection through a hybrid
design of slotted Aloha and tree traversal. Clone tags cause unreconciled col-
lisions. DeClone first uses slotted Aloha to quickly find a possible unreconciled
collision (e.g., the collision caused by the two tags marked with id5) and then
further verifies it using breadth first tree traversal.

Second, from the very beginning of each frame, DeClone
uses a hybrid design of slotted Aloha and tree traversal to
arbitrate collisions. Such design yields faster clone detection
than does BASE when system scale becomes relatively large
(e.g., over 1,000 tags, Section V).

DeClone Example. Figure 3 illustrates how DeClone
deterministically detects clone tags in an anonymous RFID
system. In accordance with Figure 1 and Figure 2, we label
tags with id1 through id5 for ease of presentation instead of
assuming their IDs to be known. The two tags marked with id5
consist of a genuine tag and a clone tag. DeClone starts with
slotted Aloha and issues a frame of time slots in which tags
will randomly respond. For an empty or singleton slot, the
reader follows conventional slotted Aloha. For example, tag
id1 responds in a singleton slot, the reader acknowledges it to
keep silent and proceeds to the next slot. For a collision slot,
the reader verifies whether it is an unreconciled collision before
starting the next slot. Specifically, the reader issues a new
frame to further arbitrate tags that responded in the collision
slot. For example, tag id2 and tag id3 respond in a collision
slot. The reader further arbitrates them in a new frame with f1
slots. After detecting two non-empty slots that are sufficient
for negating an unreconciled collision, the reader immediately
terminates the new frame and traces back to the original frame.
If the new frame contains only one non-empty slot, the reader
detects a possible unreconciled collision and then switches
to tree traversal for verification. Take the collision caused by
genuine tag id5 and clone tag id5 for example. Since the two
tags have the same ID, they always simultaneously respond
whether slotted Aloha or tree traversal is in use. By the end
of tree traversal, the reader detects an unreconciled collision
caused by tags with ID 101 and hence the cloning attack.
(We use 3-bit tag IDs for ease of presentation.) Note that
instead of adopting traditional depth first tree traversal, we
propose breadth first tree traversal toward faster detection of
unreconciled collisions. We will next detail the design specifics
of DeClone.



B. DeClone Design

As Figure 3 depicts, DeClone consists of two key compo-
nents, unreconciled collision detection and unreconciled colli-
sion verification. Unreconciled collision detection quickly finds
possible unreconciled collisions through re-arbitrating colli-
sions using slotted Aloha. A possible unreconciled collision
still yields a collision after re-arbitration (e.g., the collision
caused by two id5’s in Figure 3). For determining whether
a possible unreconciled collision really is unreconciled, the
component of unreconciled collision verification further arbi-
trates tags that cause the possible unreconciled collision using
breadth first tree traversal. Since unreconciled collisions are
attributable to clone tags, DeClone can detect cloning attacks
with certainty by the evidence of unreconciled collisions. We
next detail DeClone design with focus on the two components.

Unreconciled collision detection. In this component, we
re-arbitrate collisions using slotted Aloha to find possible
unreconciled collisions. Specifically, the reader first issues
frame size f and random seed r. Tags then use f and r to
derive in which time slot they respond. The response is a
10-bit random string with CRC embedded for distinguishing
singletons from collisions. For empty and singleton slots, the
reader follows conventional slotted Aloha. For a collision slot,
the reader does not directly trigger next time slot. Instead, the
reader re-arbitrates tags responded in the collision slot using
slotted Aloha with re-arbitration frame size fr and another
random seed. The response is of length 1 bit for distinguishing
empties from non-empties. Take the first collision caused by
id2 and id3 in Figure 3 for example. If the re-arbitration yields
more than one non-empty slot, we make sure that the collision
is not unreconciled, trace back to the original frame, and
proceed to the next slot. However, if the re-arbitration yields
only one non-empty slot (e.g., the collision by two id5’s in
Figure 3), the collision is likely unreconciled. The possibility
of it being really unreconciled depends on the value of re-
arbitration frame size fr; we formulate it in Theorem 1 [20].

Theorem 1: Given a possible unreconciled collision with
re-arbitration frame size fr, the probability PUC(fr) of it being
really unreconciled (i.e., caused by tags with the same ID) is
lower bounded by the following:

PUC(fr) ≥ 1 −
1

f2
r

.

Proof: We first derive the probability PD(fr) of the
collision caused by tags with different IDs. The we have
PUC(fr) = 1 − PD(fr). Let NPUC denote the number of IDs
of tags that cause the possible unreconciled collision. PD(fr)
is equal to the probability that all the tags with NPUC ≥ 2
different IDs respond in one of the fr slots.

PD(fr) =

fr−1∑

i=0

1

fr

1

fNPUC

r

=
1

fNPUC

r

≤
1

f2
r

. (3)

We thus derive PUC(fr) as follows:

PUC(fr) = 1 − PD(fr)

≥ 1 −
1

f2
r

.

The second line substitutes PD(fr) with Formula 3.

Following BASE design, DeClone initializes frame size
f to Nid and decreases it by the number of singletons in
the ith round for the (i + 1)th round, where i ≥ 1. This is
because DeClone also desires a high ratio of singletons in a
frame. For a singleton slot, if its corresponding tag has been
cloned, the singleton will turn to an unreconciled collision.
Therefore, the higher ratio of singletons we expect from a
frame, the higher probability of at least one of the expected
singletons becoming an unreconciled collision. This further
yields a higher probability of clone detection in the frame.

Unreconciled collision verification. In this component, we
re-arbitrate the possible unreconciled collision using breadth
first tree traversal to verify unreconciled collision. We design
breadth first tree traversal toward faster execution as follows.
The reader traverses the binary tree by broadcasting the ID
prefix corresponding to the node being traveled. Tags matching
the broadcast ID prefix respond with 1-bit responses as we
need only two response states of empty and non-empty. For
a non-leaf level, the reader travels in a breadth first search
fashion until it detects two non-empties. Since two non-empties
indicate that the possible unreconciled collision is not really
unreconciled, the reader traces back to the original frame and
triggers the next slot. However, if the level contains only one
non-empty node, the reader continues traversing the subtree
rooted at the non-empty node. For the leaf level, the reader
still traces back to the original frame upon detecting two non-
empties. If the leaf level contains only one non-empty, the
reader verifies an unreconciled collision, detects the cloning
attack, and terminates the protocol. In summary, breadth first
tree traversal is fast because the reader travels only two nodes
at each level; this property can also be drawn from Figure 3.

C. Performance Analysis

For the requirements described in Section II-C, DeClone
guarantees accuracy and scalability but might leak a few tag
IDs with slight probability. We sketch the analysis as follows.

Anonymity. DeClone cannot preserve the anonymity of
cloned IDs either (as in Section III-C) and might leak a
small number of tag IDs with a controllable, slight probability.
DeClone leaks two tag IDs when 1) their corresponding tags
simultaneously respond in both the original frame and the re-
arbitration frame, and 2) their corresponding leaves have the
same parent in the binary tree. If condition 1 is not satisfied, the
two tag IDs do not enter tree traversal and thus are protected.
By Theorem 1, the probability of two different tag IDs falling
into the same slot can be very low under a certain fr (i.e.,
1/f2

r ). Furthermore, condition 2 is also rarely satisfied. Only
when the two tag IDs are consecutive and have the same parent
will DeClone need to broadcast them for tree traversal. If
the two tag IDs’ corresponding leaves have different parents,
DeClone will detect two non-empties on the second highest
level as latest and trace back to the original frame. In this
more common case, DeClone does not enter the leaf level or
leak tag IDs.

Accuracy. DeClone satisfies the accuracy requirement with
neither false positive nor false negative. First, when no clone
tags exist, no unreconciled collisions will occur. DeClone thus
reports no cloning attack and leads to no false positives. Sec-
ond, when clone tags exist, they will cause unreconciled colli-
sions. According to DeClone design, once a cloned ID picks a
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Fig. 4. DeClone detection time with ID cardinality Nid=1,000, one cloned
ID, and varying re-arbitration frame size fr.

time slot without other contending IDs, its caused unreconciled
collision can be verified by DeClone. It is straightforward that
an unreconciled collision must occur within a sufficiently a
large number of rounds of arbitration. DeClone thus detects
cloning attack without false negatives.

Scalability. DeClone satisfies the scalability requirement
with a linear time complexity with respect to system scale.
DeClone terminates when it detects an unreconciled collision,
which is supposed to be a singleton without clone tags.
Intuitively, more cloned IDs yield faster clone detection. We
now analyze the case with only one cloned ID among Nid

ones. Since DeClone sets frame size f to be the number
of tag IDs to count, each frame contains approximately f/e
expected singletons. The probability of detecting cloning attack
in the first frame, that is, the probability of the cloned ID
corresponding to one of the expected singletons. is therefore
1/e. The probability pi of DeClone detecting cloning attack
in the ith frame is defined as the following:

pi =
1

e
(1 −

1

e
)i−1. (4)

With frame size initialized to Nid and reduced by a ratio about
1/e, the frame size fi for the ith round is as the following:

fi = Nid(1 −
1

e
)i−1. (5)

As discussed in Section III-C, fi slots consist of fi/e empties,
fi/e singletons, and (1 − 2/e)fi collisions on average. An
empty and a singleton spans Te and Ts, respectively. For most
collisions, it takes Tc for collision detection and at most frTe

for re-arbitration. For only a few collisions, DeClone starts
tree traversal and rarely enters the leaf level. We can amortize
the additional time cost by tree traversal to each collision slot
with a small constant ε.

We approximate the execution time of DeClone as follows:

TDeClone =
∑

i≥1

pi(
fi

e
Te +

fi

e
Ts + (1 −

2

e
)fi(Tc + frTe + ε))

≈ C(
(1 − 1

e
)2

2 − 1
e

+
1

e
)Nid, (6)

where C = 1
e
Te + 1

e
Ts + (1 − 2

e
)(Tc + frTe + ε) and the

second line substitutes pi and fi by Equation 4 and Equation 5,
respectively. DeClone thus has a linear time complexity of
O(Nid) and satisfies the requirement of scalability.

1 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Instance Index

D
e
te

c
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
)

BASE

DeClone

BASE Average

DeClone Average
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V. PERFORMANCE EVALUATION

In this section, we validate the performance of BASE
and DeClone through simulations. As Section I reviews, most
existing clone detection protocols (e.g., in [4], [6], [10]–
[17]) require known tag IDs and cannot apply to anonymous
RFID systems. Furthermore, the only existing protocol in [20]
for anonymous RFID systems cannot detect clone tags with
certainty. In comparison with the prior art, BASE and DeClone
are the first line of protocols toward deterministic clone
detection for anonymous RFID systems. We thus evaluate
their performance without comparing against that of existing
protocols. As the results will show, both BASE and DeClone
can accurately detect the existence of clone tags.

A. System Configuration

We simulate the system and attack according to the model
in Section II-A and Section II-B. Following the C1G2 standard
[40] and Philips I-CODE specification [41], a tag has a 96-bit
ID and a reader takes 0.4 ms to distinguish an empty from a
nonempty and 0.8 ms a singleton from a collision. That is, we
have Te = 0.4 ms and Ts = Tc = 0.8 ms for Equation 2
and Equation 6. For DeClone, tree traversal issues queries
of varying-length ID prefixes; we approximate the average
transmission time for a single bit to 25 µs [1]. Re-arbitration
frame size fr of DeClone is also worthy of discussion. If
fr is too small, collisions caused by tags with different IDs
may frequently lead to possible unreconciled collisions, which
further invoke tree traversal and increase detection time. On
the other hand, if fr is too large, collisions caused by tags
with different IDs can be highly likely reconciled to at least
two nonempties and will not invoke tree traversal. A large
re-arbitration frame, however, does increase detection time
as well. We empirically choose fr for DeClone execution.
Figure 4 instantiates fr selection when the ID cardinality is
Nid =1,000 with one being cloned. The detection time is
averaged over 10,000 runs. We observe that fr =3 yields a
faster detection on average than do other fr’s. We thus select
fr =3 for Nid =1,000 and follow the same way to select fr

for other execution instances.

B. Detection Time Fluctuation

We first report fluctuation trend of the detection time. Per
protocol designs, BASE detects clone tags until almost all
genuine tags are counted whereas DeClone depends on when a
cloned ID picks an expected singleton slot. The detection time
of BASE is thus relatively stable. In comparison, the detection
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cloned ID.

time of DeClone fluctuates more because a tag picks each slot
in a frame with similar probability. That is, if the cloned ID
chooses a starting yet expected singleton slot, DeClone might
detect the cloning attack very quickly. Otherwise, if the cloned
ID falls to an ending slot of the frame, DeClone takes a longer
detection time.

Figure 5 reports detection time of 100 successive instances
of BASE and DeClone. All instances share a set of Nid =1,000
tag IDs with one being cloned. As we expect, BASE delivers
a relatively stable detection time ranging from 1.68 seconds to
1.88 seconds. The detection time of DeClone, however, varies a
lot, ranging from 0.36 seconds to 3.07 seconds. Out of the 100
runs, 49 runs of DeClone take more time than the fastest BASE
instance. For the average detection time, DeClone takes 1.63
seconds and outperforms BASE, which takes 1.78 seconds. It
indicates that DeClone is more favorable for frequent detection
while BASE is more desirable for some critical checking points
that solicit predictable detection time. As later results will
show, the gap of average detection time broadens with system
scale and clone ratio; the case of DeClone being slower than
BASE becomes less frequently and vanishes as the number of
cloned IDs increases.

C. Varying System Scale

We now evaluate the performance of BASE and DeClone
under varying system scale. We expect that DeClone delivers
faster detection for large systems while BASE might be faster
for small systems. An extreme case is when ID cardinality
Nid =1 and the only ID is cloned. In this case, BASE can
detect cardinality contradiction and hence the cloning attack
using only one time slot. For DeClone, besides the one time
slot in the original frame, it takes an extra re-arbitration frame
as well as tree traversal, costing more time for detection than
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Fig. 8. Detection time with tag cardinality Nid =10,000 including a varying
number of cloned IDs.

does BASE.

Figure 6 and Figure 7 respectively report the results for
relatively small systems (Nid from 100 to 10,000) and rela-
tively large ones (Nid from 2,000 to 10,000). We still focus
on the one–cloned-ID scenario. Both BASE and DeClone
guarantee a linear average detection time with respect to
system scale. Since DeClone has a less stable detection time
(Figure 5), we report also the number of DeClone runs with
longer detection time than the minimum of BASE runs among
10,000 runs in Figure 6(b) and Figure 7(b). As shown in
Figure 6, when the system scale is as small as 100, all 10,000
BASE runs outperform DeClone. When the system approaches
800, DeClone starts delivering a lower average detection time
than that of BASE, although having over 4,000 runs beaten
by BASE. As the system scales up thereafter, the average
detection time gap between BASE and DeClone widens and
the case when DeClone is slower than BASE becomes less
frequently. Another interesting observation is that when only
one cloned ID exists, detection time of 10,000 DeClone runs
per system scale follows a uniform distribution. This explains
why the average detection time of DeClone approximates to
half of the maximum plus the minimum.

D. Varying Clone Ratio

We further evaluate the performance of BASE and DeClone
under varying clone ratio. Figure 8 reports average detection
time of BASE and DeClone over 10,000 runs with ID cardi-
nality Nid =10,000 and varying number of cloned IDs. The
more cloned IDs, the faster DeClone detects the cloning attack.
BASE is, however, not sensitive to the change in clone ratio.
When there are 10 cloned IDs, we observe only one instance of
DeClone being slower than BASE. We the number of cloned
IDs exceeds 10, the case of DeClone being slower than BASE
vanishes. The fluctuation of DeClone’s detection time eases as
clone ratio increases. We thus suggest that DeClone is more
suitable for large systems with a few tags compromised.

VI. CONCLUSION

We have studied deterministic clone detection for anony-
mous RFID systems. Most existing clone detection protocols
necessitate the knowledge of tag IDs and may not well support
privacy-sensitive RFID applications. The only dedicated effort
on clone detection in anonymous systems still tolerates the
existence of a few clone tags. In this paper, we propose BASE
and DeClone, two clone detection protocols with detection
certainty and scalability for large anonymous RFID systems.



The evaluation results show that BASE delivers faster detec-
tion for small systems while DeClone for large. Comparing
with existing work, the proposed protocols can better secure
RFID applications without sacrificing privacy. Future work lies
in enriching applicability of the protocols (e.g., adapting to
scenarios with tags distributed across multi-place like RFID-
enabled supply chains).
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