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Abstract—Software-Defined Networking (SDN) has greatly
enriched the flexibility of network management. It introduces
a central controller to take over most network functions that
otherwise reside in distributed forwarding devices. Such a
centralized design, however, tends to make control channel a
bottleneck due to bandwidth fatigue. Existing work saves control
channel bandwidth at the expense of losing visibility of most
or mice flows. This paper proposes FastLane, a framework for
bandwidth-efficient SDN flow setup without sacrificing global
flow visibility. FastLane advocates that the controller inform
only a flow’s ingress switch of the flow’s forwarding path while
switches themselves cooperate to complete flow setup. This way,
FastLane keeps minimum traffic for flow setup in control channel
and leaves the rest to data plane. The analytical results validate
FastLane’s higher bandwidth efficiency over traditional SDN,
especially for relatively long forwarding paths. For a 3-switch
path, FastLane can already save more than a half of bandwidth.
The saved bandwidth can embrace more flow setups and thus
reduces flow latency.

I. INTRODUCTION

With flexible network management brought by Software-

Defined Networking (SDN) come also potential bottlenecks.

SDN significantly improves network management flexibility

through consolidating network functions from forwarding de-

vices to a central controller [1]. The centralized design, how-

ever, makes the controller a potential bottleneck [2]. Another

potential bottleneck lies in limited control channel bandwidth

switches can support. An HP ProCurve 5406zl switch [3], for

example, supports only 17 Mbps control channel bandwidth,

which can hardly satisfy low-latency flow setup and fine-

grained statistics collection at the same time for large net-

works [4]. Furthermore, Ternary Content Addressable Mem-

ory (TCAM) for switches installing non-exact match rules

is expensive, power-hungry, and usually scarce on switches

[2]. Most commercial switches can accommodate at most

thousands of rules [4], [5]. This leads to switches frequently

querying the controller for rules and further saturates control

channel (Figure 1(a)). Solutions against these bottlenecks are

critical for SDN to make the most of its innovation. In this

paper, we primarily target control channel bottleneck.

Existing solutions mitigate control channel bottleneck but

cost the controller of visibility over most or mice flows. Typi-

cal such solutions, DIFANE [2] and DevoFlow [4], economize

control channel usage by devolving controller workload to data

plane. DIFANE introduces authority switches to relieve the

controller from cumbersome flow setup. The controller pre-

installs rules on authority switches, which will later accommo-
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Fig. 1. Comparison of flow setup by (a) traditional SDN and (b) FastLane.
FastLane keeps minimum traffic for flow setup in control channel and leaves
the rest to data plane.

date rule queries from normal switches. Flow setup traffic then

stays between authority switches and normal switches, rarely

invoking the controller. The controller can, however, hardly

maintain global flow visibility [4]. DevoFlow, on the other

hand, proposes rule cloning technique and enables switches to

locally handle flow setup. DevoFlow mitigates control channel

bottleneck while focusing more on tracking elephant flows

rather than mice flows [4].

In this paper, we propose FastLane for bandwidth-efficient

flow setup without sacrificing flow visibility. Figure 1 sketches

the key difference of FastLane from traditional SDN. As

in Figure 1(b), FastLane completes flow setup by requiring

that the controller inform only a flow’s ingress switch of

the flow’s processing rules. Switches on the forwarding path

then cooperate to install the informed rules, instead of being

individually contacted by the controller as traditional SDN

requires (Figure 1(a)). This way, FastLane strives for keeping

minimum traffic for flow setup in control channel and leaving

the rest to data plane. Since FastLane preserves reactive

flow setup, it keeps flow visibility intact as traditional SDN

does. Our analysis shows that FastLane can achieve not only

bandwidth-efficient but also faster flow setup for SDN. In line

with DIFANE [2] and DevoFlow [4], FastLane imposes minor

software modifications on the controller and switches.

We highlight the paper’s contributions to mitigating SDN

control channel bottleneck as follows.

• Propose a bandwidth-efficient yet flow-visibility–intact

flow setup framework with the controller communicating

with only a flow’s ingress switch.

• Present FastLane design to implement the bandwidth-

efficient flow setup framework.

• Demonstrate FastLane’s higher bandwidth efficiency and

lower flow latency over traditional SDN through analysis.



II. SDN AND WHY A FLOW COULD BE SLOW

In this section, we first introduce SDN basics and then

review its performance bottlenecks and countermeasures.

A. SDN Basics

SDN simplifies network management with a centralized

controller taking over management functions that traditionally

reside in switches [1]. The controller hosts various network

management applications such as access control, routing, and

load balancing. Applications translate high-level policies to

rules, which are further pushed to switches by the controller.

A policy dictates how an administrator would like to reg-

ulate network traffic while through the form of a rule can

switches interpret the policy. For example, an access control

policy might require users from computer science department

(in the 10.10.0.0/16 subnet) not connect finance office. The

corresponding rule to be installed on the ingress switch of

finance office subnet then is [src=10.10.*.*, drop]. The ingress

switch will drop any incoming packet with 10.10 as the prefix

of its source IP address.

As a finer-grained version of Figure 1(a), Figure 2 illustrates

how SDN steers a flow of packets. Specifically, we consider

how SDN implements the example policy that directs packets

from the 10.20.0.0/16 subnet through a three-switch network.

To implement the policy, rules to be installed on switches

sw1, sw2, and sw3 are respectively [src=10.20.*.*, fwd(2)],

[src=10.20.*.*, fwd(3)], and [src=10.20.*.*, out]. Switches

have limited TCAM space for storing rules and thus usually

install rules reactively [2]. As in Figure 2, without pre-

installing rule [src=10.20.*.*, fwd(2)], switch sw1 is agnostic

to how to process the first packet (pkt1) from the 10.20.0.0/16

subnet (step 1a). Switch sw1 needs to buffer packet pkt1,

encapsulates its packet header in a PacketIn message (step

1b), and forwards PacketIn to the controller (step 1c). The

controller then populates the corresponding rules to switches

through FlowMod messages (step 1d). Switches then install

received rules to data plane (step 1e) and correctly direct

packet pkt1 along the designated forwarding path (steps 1f, 1g,

and 1h). When the second packet (pkt2) from the 10.20.0.0/16

subnet arrives, switches direct it following the matching rules

(steps 2a, 2b, 2c, and 2d) without involving the controller.

When the number of rules on a switch increases, a packet

might match multiple rules. The controller therefore also

needs to assign each rule a priority. Switches process packets

following the matching rule with the highest priority [2].

Besides, accompanying a rule are counters that track flow

statistics such as amount and duration [4].

B. SDN Bottlenecks and Countermeasures

The flexibility of network management brought by SDN,

however, comes at the cost of potential bottlenecks [6]. Such

bottlenecks may happen to the controller, control channel for

controller-switch communication, and switches [2], [4], [5].

Controller bottleneck. The centralized design of the con-

troller makes it vulnerable to single-point failure. In SDN, the

controller takes over most network management applications
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Fig. 2. SDN flow setup and forwarding example.

previously embedded in forwarding devices. Among many

others, typical such applications measure network performance

[7], balance traffic load [8], schedule network updates [9],

and verify configuration correctness [10]. To support these

applications, the controller also needs to log network-wide

configuration specifics (e.g., rules on each switch as in

Figure 2). Although every application independently strives

for minimum overhead, together they make the controller

resource-hungry. Furthermore, since the controller installs flow

rules reactively, its another heavy workload is to welcome the

flooding PacketIn messages and populates corresponding rules

to switches (e.g., steps 1c and 1d in Figure 2). Even worse,

this process might be exploited for DDoS attacks [11], [12].

Existing countermeasures against controller bottleneck ei-

ther design a distributed controller [13]–[15] or devolve con-

troller workload to switches [2]. Since controller bottleneck

is due mainly to centralization, the most intuitive solution

is switch to distributed design. Several distributed controller

designs such as HyperFlow [13], Onix [14], and ElastiCon

[15] have addressed various key challenges like controller

synchronization and state migration. Despite the benefits of

distributed controller design, solutions for unloading a single

controller would still be necessary. DIFANE [2], to this end,

proposes devolving controller workload to switches. Specif-

ically, it introduces authority switches that are pre-fed with

rules matching all flows. Then authority switches rather than

the controller populate rules to switches upon arrival of new

flows. While shifting flow management to switches, DIFANE

deprives the controller of global visibility of flow states [4].

Control channel bottleneck. The centralized controller design

further makes control channel a heavily used medium. Two

main types of control channel traffic are for managing flow

rules and gathering flow statistics. First, most traffic for man-

aging flow rules is by flow setup (e.g., PacketIn and FlowMod

messages as steps 1c and 1d in Figure 2). DevoFlow reports

that [4] a one-way flow setup generates 94 + 144N bytes for

an N -switch path. This leads to one control packet for every

two or three packets entering a three-switch path and thus a

lot of control channel traffic [4]. Messages for rule deletion

or other update operations further saturate the control channel

[9]. Second, collecting flow statistics may cost more bandwidth

than flow setup does. Timely and accurate flow statistics

are necessary for effective flow schedulers [16]. Statistics

collection and flow setup compete for the control channel

bandwidth. Collecting finer-grained statistics lowers flow setup

rate. As DevoFlow measured, an HP ProCurve 5406zl switch



[3] can support 17 Mbps control channel bandwidth, which is

even not sufficient for collecting statistics for 16,000 exact-

match rules and 1,500 wild-card rules twice per second [4].

Devolving controller workload to switches mitigates not

only controller bottleneck but also control channel bottleneck

[2], [4]. Unlike DIFANE [2] that introduces authority switches

to take over most of the controller’s flow management tasks,

DevoFlow [4] enables switches to locally handle certain flow

setups and suggests efficient statistics collection methods.

Their bandwidth efficiency gains come with the cost of losing

global visibility of most or mice flows [4].

Switch bottleneck. Limited internal bandwidth and CPU

capacity confine the traffic processing capability of switches

[4]. Take again the 5406zl switch for example. The bandwidth

between the line-card ASIC and the management CPU is

about 80 Mbps (e.g., steps 1b and 1e in Figure 2) while

the ASIC has a raw bandwidth of 300 Gbps [4]. Another

indirect cause for switch bottleneck is its limited TCAM space

for installing rules. The 5406zl switch supports about 1,500

rules [4], which are far from enough for fine-grained flow

management. Switches, therefore, need to frequently invoke

the controller for fetching uninstalled rules. This process (e.g.,

steps 1b-1e in Figure 2) consumes not only switch internal

bandwidth and switch CPU but also control channel bandwidth

and controller CPU.

While strengthening switch internal bandwidth and CPU

may have to wait for break-through innovations, existing re-

search efforts start economizing TCAM usage. SwitchReduce

proposes compressing same-action rules [5]. A SwitchReduce

rule can match all packets with the same forwarding ac-

tion, regardless of whether their packet headers are identical.

CacheFlow augments switches with additional rule caches

[17]. The on-switch TCAM installs popular rules to handle

most packets with line-speed forwarding. Less popular rules

are installed in the augmented cache, from where rather than

the controller switches may fetch rules for unmatched flows.

III. STEERING FLOWS TO FASTLANE

In this section, we present FastLane, an SDN flow setup

framework that mitigates control channel bottleneck with-

out sacrificing flow visibility. FastLane advocates that the

controller inform only a flow’s ingress switch of the flow’s

forwarding path (Figure 1(b)). The path information is then

passed along among the ingress switch and en-route switches

(i.e., intermediate switch(es) and egress switch). Not directly

installing rules to en-route switches by the controller saves

control channel bandwidth, especially when the forwarding

path is relatively long. The saved bandwidth can benefit more

flow setups, finer-grained statistics collection, or other control

traffic.

A. Motivation

FastLane strives for saving control channel bandwidth with-

out sacrificing flow visibility. Observing traditional SDN flow

setup a bit deeper (Figure 1(a)), we find that the controller

can maintain a global flow visibility if each unmatched flow’s

ingress switch generates a PacketIn message. For successful

flow setup, the controller need also issue FlowMod messages.

However, since switches are designed for fast forwarding, we

argue that the controller can inform only the ingress switch of

the forwarding path (in a FlowMod’ message) and let switches

themselves coordinate to pass along the FlowMod’ message

and correctly install rules (Figure 1(b)). This way, FastLane

keeps the minimum traffic for flow setup in the control channel

while leaving others to data plane. Take the 3-switch case in

Figure 1 for example. Traditional SDN flow setup uses four

packets (1 PacketIn + 3 FlowMod) while FastLane only two

(1 PacketIn + 1 FlowMod’). The network load of PacketIn

and of FlowMod is respectively 94 bytes and 144 bytes [4].

For simplicity, we temporarily assume that FlowMod’ and

FlowMod have comparative amount of network load. (More

generalized analysis is available in Section IV-A.) FastLane

thus saves 1− 94+144
94+144×3

= 55% of control channel bandwidth,

being 2.2x bandwidth-efficient than traditional SDN.

B. FastLane Design

Pre-thought. To achieve the FastLane design as illustrated in

Figure 1(b), we need to address three key questions.

• Q1: How does the controller inform the ingress switch of

the forwarding path with FlowMod’?

• Q2: How does the ingress switch install the associated

rule to switch data plane and forward the FlowMod’ to

next-hop switch?

• Q3: How does an en-route switch install the associated

rule to switch data plane and forward the FlowMod’ to

next-hop switch?

For addressing the preceding questions, FastLane makes

minor software modifications to the controller and switches.

Controller software modification is necessary for addressing

Q1. The modification enables the controller to encapsulate

the entire path instead of only the next hop into FlowMod’.

Switch software modification helps address Q2 and Q3. Since

FlowMod’ is no longer in the format of a flow rule, the

ingress switch should adapt to extracting the associated rule

from FlowMod’ and then forwarding FlowMod’ to next hop.

Furthermore, when an en-route switch receives FlowMod’,

it needs to locally handle rule installation and FlowMod’

forwarding without re-directing FlowMod’ to the controller.

FastLane flow setup redesigns the process of installing rules

to switches toward saving control channel bandwidth. On the

other hand, it does not modify the process of how an ingress

switch directs PacketIn to the controller and how the controller

compiles the forwarding path. We detail FastLane design along

with how we address the aforementioned three questions.

Solution of Q1: The controller informs only the ingress

switch of the forwarding path with FlowMod’ message. Flow-

Mod’ is a modified version of FlowMod. The Action field is

replaced with the FwdPath field while the Priority field is re-

placed with the PriorityPath field that comprises a sequence of

priorities corresponding to each switch on the path. We capture

the difference of FlowMod’ from FlowMod in Formula 1 and

Formula 2, where || represents concatenation.
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FlowMod = Priority || Header || Action; (1)

FlowMod’ = PriorityPath || Header || FwdPath. (2)

When Action for the ingress switch is “drop”, FlowMod’ is

faced with a one-switch forwarding-path and specialized to

FlowMod. But more often, FwdPath in FlowMod’ consists of

more than one switch.

Solution of Q2: The ingress switch 1) extracts the rule

indicated by FlowMod’, 2) installs the rule, and 3) constructs

a data packet called PathConfigPkt with FlowMod’ as payload

and then feeds PathConfigPkt to switch data plane. To achieve

Steps 1 and 2, the ingress switch extracts next-hop switch

NextHop and its associated priority P from FwdPath and

PriorityPath, respectively. It then constructs rule R:

R = P || Header || NextHop, (3)

and installs R to switch data plane. The ingress switch now

knows how to handle packets in the flow led by the packet

that triggered PacketIn.

For Step 3, configuring PathConfigPkt’s header is relatively

complicated. Simply copying the header of R-matching pack-

ets is not effective. Since any switch could be an ingress

switch that initiates installing certain rules, a switch can hardly

guarantee a full knowledge of rules on its next-hop switch.

Upon receiving PathConfigPkt, if a switch already has rules

matching it, PathConfigPkt will be accordingly forwarded

without being directed to switch control plane. This likely

violates the forwarding path dictated by the controller. Figure 3

shows such an example. The example intends to forward

packets from the 10.20.0.0/16 subnet via path sw1-sw2-sw3-

out while switch sw2 already caches a rule matching packets

from the 10.0.0.0/24 subnet. With header copied from a packet

with, for example, source IP address 10.20.0.0, PathConfigPkt

will be wrongly forwarded to sw4 by sw2.

Solution of Q2-Step3 and Q3: The controller maps each

switch to an index and pre-installs on each switch a highest-

priority to-switch-CPU rule defined in Formula 4.

ToSwitchRule=HighestPriority||SwitchIndex||to switch CPU. (4)

To support ToSwitchRule, the packet header needs sufficient

unused bits as SwitchIndex. Such bits are usually readily avail-

able and have been leveraged for SwitchReduce compressing

rules [5] and FlowTags enforcing policies [18]. ToSwitchRule

directs any packet with SwitchIndex-bits assigned to switch

control plane.

We now associate the motivation of ToSwitchRule with how

it helps constructing PathConfigPkt for Q2-Step3. If PathCon-

figPkt can match ToSwitchRule, it can be correctly directed to
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switch control plane for keeping the flow setup process alive.

For PathConfigPkt to match ToSwitchRule on a switch, its

header’s SwitchIndex-bits should be set as the switch’s index.

For example, if switch sw2 in Figure 3 caches a ToSwitchRule

and PathConfigPkt from switch sw1 is with SwitchIndex=sw2,

the PathConfigPkt can be correctly directed to sw2’s control

plane rather than sw4. Furthermore, for PathConfigPkt to be

correctly forwarded, it also needs to match the rule extracted

from its carrying FlowMod’. As aforementioned, this requires

that PathConfigPkt’s header follow the packet that triggers

FlowMod’. Putting foregoing pieces together, we construct

PathConfigPkt by Formula 5.

PathConfigPkt = Pkt(FlowMod’).Header[SwitchIndex=NextHop] ||

Payload[FlowMod’]. (5)

Pkt(FlowMod’).Header[SwitchIndex=NextHop] in the first

line composes PathConfigPkt’s header. Pkt(FlowMod’)

denotes the packet that triggers PacketIn and FlowMod’.

Pkt(FlowMod’).Header[SwitchIndex=NextHop] corresponds

to Pkt(FlowMod’)’s header with SwitchIndex-bits set as

NextHop. Payload[FlowMod’] in the second line uses

FlowMod’ as the payload of PathConfigPkt. Other en-route

switches can reuse PathConfigPkt’s header with SwitchIndex-

field modified. The egress switch of a flow need only install

the rule extracted from received PathConfigPkt without

re-constructing or forwarding the PathConfigPkt.

FastLane practice. We now exercise FastLane with a flow

setup instance as shown in Figure 4. Same as Figure 3,

Figure 4 aims to configure the sw1-sw2-sw3-out path for

packets from the 10.20.0.0/16 subnet given that sw2 caches a

rule for forwarding packets from the 10.0.0.0/24 subnet to sw4.

Different from Figure 3, Figure 4 pre-installs on each switch a

ToSwitchRule by Formula 4. FastLane correctly finishes flow

setup for packets from the 10.20.0.0/16 subnet, requiring that

the controller communicate with only ingress switch sw1. We

walk through how FastLane achieves bandwidth-efficient flow

setup in Figure 4 step-wise as follows.

Ingress switch: sw1. Upon arrival of the packet with source

IP address 10.20.0.0 (step a), switch sw1 finds no rule for

handling it and thus queries the controller using a PacketIn

message (steps b and c). The controller compiles the forward-

ing path and informs it to sw1 in a FlowMod’ message (step

d) as shown in Formula 6:

FlowMod’=p1-p2-p3 || src=10.20.*.* || sw1-sw2-sw3-out. (6)

FlowMod’ in Formula 6 requires that packets from the

10.20.0.0/16 subnet traverse through sw1, sw2, and sw3.



Corresponding rules on sw1, sw2, and sw3 are assigned with

priorities of p1, p2, and p3, respectively. Upon receiving Flow-

Mod’, switch sw1 first extracts specified header src=10.20.*.*,

NextHop=sw2, and corresponding priority P=p1, and then

constructs a rule R by Formula 3. Switch sw1 then installs the

rule on its data plane (step e). Now switch sw1 can correctly

forward src=10.20.*.*-packets to sw2 per the controller’s

instruction. It needs to pass on the forwarding instruction to

switches sw2 and sw3. To this end, switch sw1 constructs

PathConfigPkt1 by Formula 5:

PathConfigPkt1 = Header(src=10.20.0.0, SwithIndex=sw2) ||

Payload(FlowMod’).

Switch sw1 then feeds PathConfigPkt1 to its data plane

(step f). PathConfigPkt1 matches the src=10.20.*.*-rule and

is forwarded to switch sw2 (step g).

Intermediate switch: sw2. Upon receiving PathConfig-

Pkt1, switch sw2 matches it with the highest-priority

SwitchIndex=sw2-rule and directs it to control plane (step

h). Switch sw2 extracts specified header src=10.20.*.*,

NextHop=sw3, and corresponding priority P=p2, and then

constructs a rule R by Formula 3. Rule R is then installed to

sw2’s data plane (step i). Switch sw2 further constructs Path-

ConfigPkt2 using a copy of PathConfigPkt1 with SwitchIndex

modified to sw3 (step j).

PathConfigPkt2 = Header(src=10.20.0.0, SwithIndex=sw3) ||

Payload(FlowMod’).

Switch sw2 feeds PathConfigPkt2 to data plane and forwards

it to sw3 according to the src=10.20.*.*-rule (step k).

Egress switch: sw3. As the egress switch of src=10.20.*.*-

flow, sw3 need only extract src=10.20.*.*-rule from Path-

ConfigPkt2 and install it. It need not further re-construct

or forward PathConfigPkt. Since PathConfigPkt2 matches

the highest-priority ToSwitchRule, switch sw3 directs it to

control plane (step l). Switch sw3 then extracts specified

header src=10.20.*.*, NextHop=out, and corresponding pri-

ority P=p3, and constructs a rule R by Formula 3. Finally,

switch sw3 installs rule R to data plane (step m) and completes

flow setup for packets from the 10.20.0.0/16 subnet.

In summary, FastLane achieves bandwidth-efficient flow

setup by keeping minimum control channel traffic between

the controller and the ingress switch. The controller no longer

informs all switches on the forwarding path of intended rules.

It is switches that pass on the rules and install them. Take

the example in Figure 4 for instance. FastLane imposes only

two packets on control channel whereas traditional SDN in

Figure 1(a) requires four. Furthermore, FastLane preserves

global flow visibility as traditional SDN does because it still

directs each unmatching flow to the controller.

IV. PERFORMANCE

In this section, we analyze FastLane’s performance in terms

of bandwidth efficiency and flow latency. The performance

analysis aims to answer the following two questions.
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• Q1: How much bandwidth can FastLane save for SDN

flow setup?

• Q2: How does FastLane affect flow latency?

A. Bandwidth Efficiency

We analyze how much bandwidth FastLane saves per flow

setup. In comparison with traditional SDN flow setup, Fast-

Lane encapsulates priorities and actions for all switches on the

forwarding path in one FlowMod’ message (Formula 2). This

way, FastLane eliminates redundant control channel traffic

induced by Header and some other payloads in multiple

FlowMod messages. Let LPacketIn, LFlowMod, and LFlowMod′

denote the network load of PacketIn, FlowMod, and Flow-

Mod’, respectively. Given a forwarding path with LFwdPath

switches, traditional SDN generates a volume LPacketIn +
LFlowMod×LFwdPath of control channel traffic [4]. The traffic

generated by FastLane is between only the controller and

the ingress switch; its volume is LPacketIn + LFlowMod′ . Let

LPriority and LAction denote the network load of Priority field

and Action field, respectively, in FlowMod and FlowMod’.

The ratio Rbandwidth of FastLane’s bandwidth consumption

to traditional SDN’s is as follows.

Rbandwidth=
LPacketIn + LFlowMod′

LPacketIn + LFlowMod × LFwdPath

=
Lconstant + (LPriority + LAction)(LFwdPath − 1)

Lconstant + LFlowMod × (LFwdPath − 1)
,

where we have Lconstant = LPacketIn + LFlowMod. The lower

Rbandwidth is, the more bandwidth FastLane saves per flow

setup. Rbandwidth is upper bounded by
LPriority+LAction

LFlowMod
.

Figure 5 compares FastLane’s bandwidth efficiency with

that of traditional SDN. The configuration adopts 94-byte

PacketIn, 144-byte FlowMod [4], 2-byte Priority field, and 4-

byte Action field [19]. For each flow setup, traditional SDN

generates (94 + 144LFwdPath)-byte control channel traffic

while FastLane generates (94+144+(2+4)×(LFwdPath−1))-
byte. Both bandwidth consumption of traditional SDN and

FastLane is linear with the length LFwdPath of forwarding

path. As shown in Figure 5(a), FastLane costs less bandwidth

than does traditional SDN. The bandwidth-cost gap widens as

LFwdPath increases. The ratio Rbandwidth of FastLane’s band-

width cost to traditional SDN’s thus decreases with LFwdPath,

as shown in Figure 5(b). When LFwdPath = 3, which is a

commonly short path [4], FastLane already saves more than

a half of bandwidth for SDN completing a flow setup (i.e.,

when 1 − Rbandwidth > Rbandwidth in Figure 5(b)).



B. Flow Latency

We now analyze how FastLane affects average flow latency,

that is, the average time per flow setup.

First, we sketch the analysis of average flow latency for

traditional SDN flow setup. Let L
avg
FwdPath denote the average

length of forwarding paths. Toward saturating the control chan-

nel, each switch corresponds to one PacketIn and L
avg
FwdPath

FlowMod for L
avg
FwdPath flow setups on average. Let TPacketIn

and TFlowMod denote the time cost induced by PacketIn and

FlowMod, respectively. The average time for traditional SDN

to complete a flow setup approximates as follows.

Ttraditional=
TPacketIn + TFlowMod × L

avg
FwdPath

L
avg
FwdPath

=
TPacketIn

L
avg
FwdPath

+ TFlowMod.

Second, we outline the analysis of FastLane’s average flow

setup time. For ease of comparison with traditional SDN, we

consider the same amount of control channel bandwidth per

switch (i.e., LPacketIn + LFlowMod × L
avg
FwdPath) for FastLane

flow setup. The number NFastLane
flow of flow setups supported

by FastLane is as follows.

N
FastLane
flow = L

avg
FwdPath ×

LPacketIn + LFlowMod × L
avg
FwdPath

LPacketIn + LFlowMod′

=
L

avg
FwdPath

Rbandwidth

.

Let TSwRTT denote the round trip time between switch control

plane and data plane. The average time for FastLane to

complete a flow setup can be estimated as follows.

TFastLane =
Ttraditional + (NFastLane

flow − 1)TSwRTT

NFastLane
flow

=
Rbandwidth

L
avg
FwdPath

× Ttraditional + (1 −
Rbandwidth

L
avg
FwdPath

)TSwRTT.

According to the measurements of TPacketIn + TFlowMod =
2 ms and TSwRTT = 0.5 ms [4], we conclude that FastLane

imposes no more latency to each flow on average than tra-

ditional SDN does because of TFastLane ≤ Ttraditional. The

equality happens when L
avg
FwdPath = 1, that is, when FastLane

resembles traditional SDN; this conforms to the previous

analysis in Section IV-A.

V. CONCLUSION

We have studied bandwidth-efficient flow setup against SDN

control channel bottleneck and proposed FastLane design.

FastLane completes flow setup by requiring communication

between the controller and only a flow’s ingress switch. Fast-

Lane thus saves other en-route switches’s associated control

channel bandwidth, which otherwise is required by traditional

SDN. The saved bandwidth can benefit faster flow setup and

finer-grained statistics collection. Furthermore, FastLane gains

bandwidth efficiency without sacrificing flow visibility. Future

work lies in implementing and evaluating FastLane with NOX

controller [20] and click-based OpenFlow Switch [21] on

MiniNet testbed [22].
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